量子基态位移的高效并行化

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2023-09-28 DOI:10.1088/2058-9565/acfab7
Ljubomir Budinski, Ossi Niemimäki, Roberto Zamora-Zamora, Valtteri Lahtinen
{"title":"量子基态位移的高效并行化","authors":"Ljubomir Budinski, Ossi Niemimäki, Roberto Zamora-Zamora, Valtteri Lahtinen","doi":"10.1088/2058-9565/acfab7","DOIUrl":null,"url":null,"abstract":"Abstract Basis state shift is central to many quantum algorithms, most notably the quantum walk. Efficient implementations are of major importance for achieving a quantum speedup for computational applications. We optimize the state shift algorithm by incorporating the shift in different directions in parallel. This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods, giving a linear scaling in the number of gates versus working qubits in contrast to the quadratic scaling of the state-of-the-art method based on the quantum Fourier transform. For a one-dimensional array of size 2 n for n &gt; 4, we derive the total number of <?CDATA $15n + 74$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>15</mml:mn> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>74</mml:mn> </mml:math> two-qubit CX gates in the parallel circuit, using a total of <?CDATA $2n-2$?> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" overflow=\"scroll\"> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:math> qubits including an ancilla register for the decomposition of multi-controlled gates. We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":"13 1","pages":"0"},"PeriodicalIF":5.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient parallelization of quantum basis state shift\",\"authors\":\"Ljubomir Budinski, Ossi Niemimäki, Roberto Zamora-Zamora, Valtteri Lahtinen\",\"doi\":\"10.1088/2058-9565/acfab7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Basis state shift is central to many quantum algorithms, most notably the quantum walk. Efficient implementations are of major importance for achieving a quantum speedup for computational applications. We optimize the state shift algorithm by incorporating the shift in different directions in parallel. This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods, giving a linear scaling in the number of gates versus working qubits in contrast to the quadratic scaling of the state-of-the-art method based on the quantum Fourier transform. For a one-dimensional array of size 2 n for n &gt; 4, we derive the total number of <?CDATA $15n + 74$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mn>15</mml:mn> <mml:mi>n</mml:mi> <mml:mo>+</mml:mo> <mml:mn>74</mml:mn> </mml:math> two-qubit CX gates in the parallel circuit, using a total of <?CDATA $2n-2$?> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" overflow=\\\"scroll\\\"> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> <mml:mo>−</mml:mo> <mml:mn>2</mml:mn> </mml:math> qubits including an ancilla register for the decomposition of multi-controlled gates. We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/acfab7\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2058-9565/acfab7","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基态转移是许多量子算法的核心,尤其是量子行走。高效的实现对于实现计算应用的量子加速至关重要。我们通过将不同方向的移动并行化来优化状态转移算法。与目前已知的方法相比,这大大减少了量子电路的深度,与基于量子傅里叶变换的最先进方法的二次缩放相比,门的数量与工作量子位的数量呈线性缩放。对于大小为2n的一维数组n >4,我们推导了并行电路中15n + 74个双量子位CX门的总数,总共使用2n−2个量子位,包括一个辅助寄存器,用于多控制门的分解。我们的重点是一维和周期位移,但注意,该方法可以扩展到更复杂的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient parallelization of quantum basis state shift
Abstract Basis state shift is central to many quantum algorithms, most notably the quantum walk. Efficient implementations are of major importance for achieving a quantum speedup for computational applications. We optimize the state shift algorithm by incorporating the shift in different directions in parallel. This provides a significant reduction in the depth of the quantum circuit in comparison to the currently known methods, giving a linear scaling in the number of gates versus working qubits in contrast to the quadratic scaling of the state-of-the-art method based on the quantum Fourier transform. For a one-dimensional array of size 2 n for n > 4, we derive the total number of 15 n + 74 two-qubit CX gates in the parallel circuit, using a total of 2 n 2 qubits including an ancilla register for the decomposition of multi-controlled gates. We focus on the one-dimensional and periodic shift, but note that the method can be extended to more complex cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
Near-optimal quantum kernel principal component analysis Bayesian optimization for state engineering of quantum gases Ramsey interferometry of nuclear spins in diamond using stimulated Raman adiabatic passage Reducing measurement costs by recycling the Hessian in adaptive variational quantum algorithms Permutation-equivariant quantum convolutional neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1