Lahiru Wickramasinghe, Alexandre Leblanc, Saman Muthukumarana
{"title":"基于光滑Dirichlet分布的稀疏多项数据贝叶斯推断及其在COVID-19数据中的应用","authors":"Lahiru Wickramasinghe, Alexandre Leblanc, Saman Muthukumarana","doi":"10.3233/mas-221411","DOIUrl":null,"url":null,"abstract":"We develop a Bayesian approach for estimating multinomial cell probabilities using a smoothed Dirichlet prior. The most important feature of the smoothed Dirichlet prior is that it forces the probabilities of neighboring cells to be closer to each other than under the standard Dirichlet prior. We propose a shrinkage-type estimator using this Bayesian approach to estimate multinomial cell probabilities. The proposed estimator allows us to borrow information across other multinomial populations and cell categories simultaneously to improve the estimation of cell probabilities, especially in a context of sparsity with ordered categories. We demonstrate the proposed approach using COVID-19 data and estimate the distribution of positive COVID-19 cases across age groups for Canadian health regions. Our approach allows improved estimation in smaller health regions where few cases have been observed.","PeriodicalId":35000,"journal":{"name":"Model Assisted Statistics and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian inference on sparse multinomial data using smoothed Dirichlet distribution with an application to COVID-19 data\",\"authors\":\"Lahiru Wickramasinghe, Alexandre Leblanc, Saman Muthukumarana\",\"doi\":\"10.3233/mas-221411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a Bayesian approach for estimating multinomial cell probabilities using a smoothed Dirichlet prior. The most important feature of the smoothed Dirichlet prior is that it forces the probabilities of neighboring cells to be closer to each other than under the standard Dirichlet prior. We propose a shrinkage-type estimator using this Bayesian approach to estimate multinomial cell probabilities. The proposed estimator allows us to borrow information across other multinomial populations and cell categories simultaneously to improve the estimation of cell probabilities, especially in a context of sparsity with ordered categories. We demonstrate the proposed approach using COVID-19 data and estimate the distribution of positive COVID-19 cases across age groups for Canadian health regions. Our approach allows improved estimation in smaller health regions where few cases have been observed.\",\"PeriodicalId\":35000,\"journal\":{\"name\":\"Model Assisted Statistics and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Model Assisted Statistics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/mas-221411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Model Assisted Statistics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/mas-221411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Bayesian inference on sparse multinomial data using smoothed Dirichlet distribution with an application to COVID-19 data
We develop a Bayesian approach for estimating multinomial cell probabilities using a smoothed Dirichlet prior. The most important feature of the smoothed Dirichlet prior is that it forces the probabilities of neighboring cells to be closer to each other than under the standard Dirichlet prior. We propose a shrinkage-type estimator using this Bayesian approach to estimate multinomial cell probabilities. The proposed estimator allows us to borrow information across other multinomial populations and cell categories simultaneously to improve the estimation of cell probabilities, especially in a context of sparsity with ordered categories. We demonstrate the proposed approach using COVID-19 data and estimate the distribution of positive COVID-19 cases across age groups for Canadian health regions. Our approach allows improved estimation in smaller health regions where few cases have been observed.
期刊介绍:
Model Assisted Statistics and Applications is a peer reviewed international journal. Model Assisted Statistics means an improvement of inference and analysis by use of correlated information, or an underlying theoretical or design model. This might be the design, adjustment, estimation, or analytical phase of statistical project. This information may be survey generated or coming from an independent source. Original papers in the field of sampling theory, econometrics, time-series, design of experiments, and multivariate analysis will be preferred. Papers of both applied and theoretical topics are acceptable.