Zhao-yang Yin, Qi-chi Le, Yan-chao Jiang, Da-zhi Zhao, Qi-yu Liao, Qi Zou
{"title":"基于三维双频超声场数值模拟的超声空间相互作用研究","authors":"Zhao-yang Yin, Qi-chi Le, Yan-chao Jiang, Da-zhi Zhao, Qi-yu Liao, Qi Zou","doi":"10.1007/s41230-023-3042-1","DOIUrl":null,"url":null,"abstract":"A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt. The effects of insertion depth and tip shape of the ultrasonic rods, input pressures and their ratio on the acoustic field distribution were discussed in detail. Additionally, the spacing, angle, and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds. As a result, various acoustic pressure distributions and cavitation regions are obtained. The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7% and 31.7%, respectively, compared to the plate and conical rods. Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern. The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region, and the best cavitation effect is obtained at the ratio of 2:1 (P15:P20).","PeriodicalId":55261,"journal":{"name":"China Foundry","volume":"62 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the spatial interaction of ultrasounds based on three-dimensional dual-frequency ultrasonic field numerical simulation\",\"authors\":\"Zhao-yang Yin, Qi-chi Le, Yan-chao Jiang, Da-zhi Zhao, Qi-yu Liao, Qi Zou\",\"doi\":\"10.1007/s41230-023-3042-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt. The effects of insertion depth and tip shape of the ultrasonic rods, input pressures and their ratio on the acoustic field distribution were discussed in detail. Additionally, the spacing, angle, and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds. As a result, various acoustic pressure distributions and cavitation regions are obtained. The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7% and 31.7%, respectively, compared to the plate and conical rods. Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern. The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region, and the best cavitation effect is obtained at the ratio of 2:1 (P15:P20).\",\"PeriodicalId\":55261,\"journal\":{\"name\":\"China Foundry\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"China Foundry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41230-023-3042-1\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"China Foundry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41230-023-3042-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Understanding the spatial interaction of ultrasounds based on three-dimensional dual-frequency ultrasonic field numerical simulation
A transient 3D model was established to investigate the effect of spatial interaction of ultrasounds on the dual-frequency ultrasonic field in magnesium alloy melt. The effects of insertion depth and tip shape of the ultrasonic rods, input pressures and their ratio on the acoustic field distribution were discussed in detail. Additionally, the spacing, angle, and insertion depth of two ultrasonic rods significantly affect the interaction between distinct ultrasounds. As a result, various acoustic pressure distributions and cavitation regions are obtained. The spherical rods mitigate the longitudinal and transversal attenuation of acoustic pressure and expand the cavitation volume by 53.7% and 31.7%, respectively, compared to the plate and conical rods. Increasing the input pressure will enlarge the cavitation region but has no effect on the acoustic pressure distribution pattern. The acoustic pressure ratio significantly affects the pressure distribution and the cavitation region, and the best cavitation effect is obtained at the ratio of 2:1 (P15:P20).
期刊介绍:
China Foundry, published bimonthly to a worldwide readership, mainly reports on advanced scientific and technical achievements, applied technology, production successes, management and leadership, recent developments and industry information in the foundry field. Coverage encompasses all casting technologies and includes, but is not limited to, novel and net shape casting technologies; casting alloy design and modification; control of nucleation, solidification and microstructure & mechanical properties; computer aided design; rapid prototyping; mold making, mold materials and binders; mold and gating design; melting and liquid-metal treatment and transport; modeling and simulation of metal flow and solidification; post-casting treatments; quality control and non-destructive testing; process automation and robotics; and safety and environmental issues.