基于动态和多重统计降尺度方法的中国热浪增加趋势预测

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Applied Nano Materials Pub Date : 2023-10-01 DOI:10.1016/j.accre.2023.09.001
Ming Zhang , Zhong-Yang Guo , Guang-Tao Dong , Jian-Guo Tan
{"title":"基于动态和多重统计降尺度方法的中国热浪增加趋势预测","authors":"Ming Zhang ,&nbsp;Zhong-Yang Guo ,&nbsp;Guang-Tao Dong ,&nbsp;Jian-Guo Tan","doi":"10.1016/j.accre.2023.09.001","DOIUrl":null,"url":null,"abstract":"<div><p>Extensive investigations on the projection of heat waves (HWs) were conducted on the basis of coarse-resolution global climate models (GCMs). However, these investigations still fail to characterise the future changes in HWs regionally over China. PRECIS dynamical downscaling with a horizontal resolution of 25 km × 25 km was employed on the basis of GCM-HadCM3 to provide reliable projections on HWs over the Chinese mainland, and six statistical downscaling methods were used for bias correction under RCP4.5 and RCP8.5 scenarios. The multi-method ensemble (MME) of the top three dynamical downscaling methods with good performance was used to project future changes. Results showed that PRECIS primarily replicated the detailed spatiotemporal pattern of HWs. However, PRECIS overestimated the HWs in the Northwest and Southeast and expanded the areas of HWs in the Northeast and Southwest. Three statistical downscaling methods (quantile mapping, CDF-t and quantile delta mapping) demonstrated good performance in improving PRECIS simulation for reproducing HWs. By contrast, parametric-based trend-preserving approaches such as scaled distribution mapping and ISI-MIP are outperformed by the three aforementioned methods in downscaling HWs, particularly in the high latitudes of China. Based on MME projections, at the end of the 21st century, the national average of the number of HW days each year, the length of the longest HW event in the year and the extreme maximum temperature in HW will increase by 3 times, 1 time and 1.3 °C, respectively, under the RCP4.5 scenario, whilst that under the RCP8.5 scenario will increase by 8 times, 3 times and 3.7 °C, respectively, relative to 1986–2005. The Northwest is regionally projected to suffer long and hot HWs, whilst the South and Southeast will experience frequent consecutive HWs. Thus, HWs projected by the combined dynamical and statistical downscaling method are highly reliable in projecting HWs over China.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674927823001004/pdfft?md5=540e85b4fa7f816f3b31dfeaef241ded&pid=1-s2.0-S1674927823001004-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Projected heat wave increasing trends over China based on combined dynamical and multiple statistical downscaling methods\",\"authors\":\"Ming Zhang ,&nbsp;Zhong-Yang Guo ,&nbsp;Guang-Tao Dong ,&nbsp;Jian-Guo Tan\",\"doi\":\"10.1016/j.accre.2023.09.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extensive investigations on the projection of heat waves (HWs) were conducted on the basis of coarse-resolution global climate models (GCMs). However, these investigations still fail to characterise the future changes in HWs regionally over China. PRECIS dynamical downscaling with a horizontal resolution of 25 km × 25 km was employed on the basis of GCM-HadCM3 to provide reliable projections on HWs over the Chinese mainland, and six statistical downscaling methods were used for bias correction under RCP4.5 and RCP8.5 scenarios. The multi-method ensemble (MME) of the top three dynamical downscaling methods with good performance was used to project future changes. Results showed that PRECIS primarily replicated the detailed spatiotemporal pattern of HWs. However, PRECIS overestimated the HWs in the Northwest and Southeast and expanded the areas of HWs in the Northeast and Southwest. Three statistical downscaling methods (quantile mapping, CDF-t and quantile delta mapping) demonstrated good performance in improving PRECIS simulation for reproducing HWs. By contrast, parametric-based trend-preserving approaches such as scaled distribution mapping and ISI-MIP are outperformed by the three aforementioned methods in downscaling HWs, particularly in the high latitudes of China. Based on MME projections, at the end of the 21st century, the national average of the number of HW days each year, the length of the longest HW event in the year and the extreme maximum temperature in HW will increase by 3 times, 1 time and 1.3 °C, respectively, under the RCP4.5 scenario, whilst that under the RCP8.5 scenario will increase by 8 times, 3 times and 3.7 °C, respectively, relative to 1986–2005. The Northwest is regionally projected to suffer long and hot HWs, whilst the South and Southeast will experience frequent consecutive HWs. Thus, HWs projected by the combined dynamical and statistical downscaling method are highly reliable in projecting HWs over China.</p></div>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674927823001004/pdfft?md5=540e85b4fa7f816f3b31dfeaef241ded&pid=1-s2.0-S1674927823001004-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674927823001004\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674927823001004","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在粗分辨率全球气候模式(GCMs)的基础上对热浪(HWs)的预估进行了广泛的研究。然而,这些调查仍然未能描述中国地区HWs的未来变化特征。在GCM-HadCM3的基础上,采用水平分辨率为25 km × 25 km的PRECIS动力降尺度对中国大陆的高通量进行了可靠的预估,并采用6种统计降尺度方法对RCP4.5和RCP8.5情景下的偏倚进行了校正。采用性能较好的前三种动态降尺度方法中的多方法集成(MME)预测未来变化。结果表明,PRECIS主要复制了HWs的详细时空格局。然而,PRECIS高估了西北和东南部的HWs,并扩大了东北和西南的HWs区域。三种统计降尺度方法(分位数映射、CDF-t和分位数增量映射)在改善PRECIS模拟重现HWs方面表现出良好的性能。相比之下,基于参数的趋势保持方法(如比例分布映射和ISI-MIP)在降低HWs尺度方面优于上述三种方法,特别是在中国高纬度地区。基于MME预估,21世纪末,与1986-2005年相比,RCP4.5情景下的年平均HW日数、年最长HW事件持续时间和HW极端最高温度分别增加3倍、1倍和1.3℃,而RCP8.5情景下的年平均HW日数、最长HW事件持续时间和极端最高温度分别增加8倍、3倍和3.7℃。预计西北地区将遭受长时间高温热浪的影响,而南部和东南部地区将频繁经历连续的高温热浪。因此,采用动力降尺度与统计降尺度相结合的方法预报的高通量在中国上空具有较高的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Projected heat wave increasing trends over China based on combined dynamical and multiple statistical downscaling methods

Extensive investigations on the projection of heat waves (HWs) were conducted on the basis of coarse-resolution global climate models (GCMs). However, these investigations still fail to characterise the future changes in HWs regionally over China. PRECIS dynamical downscaling with a horizontal resolution of 25 km × 25 km was employed on the basis of GCM-HadCM3 to provide reliable projections on HWs over the Chinese mainland, and six statistical downscaling methods were used for bias correction under RCP4.5 and RCP8.5 scenarios. The multi-method ensemble (MME) of the top three dynamical downscaling methods with good performance was used to project future changes. Results showed that PRECIS primarily replicated the detailed spatiotemporal pattern of HWs. However, PRECIS overestimated the HWs in the Northwest and Southeast and expanded the areas of HWs in the Northeast and Southwest. Three statistical downscaling methods (quantile mapping, CDF-t and quantile delta mapping) demonstrated good performance in improving PRECIS simulation for reproducing HWs. By contrast, parametric-based trend-preserving approaches such as scaled distribution mapping and ISI-MIP are outperformed by the three aforementioned methods in downscaling HWs, particularly in the high latitudes of China. Based on MME projections, at the end of the 21st century, the national average of the number of HW days each year, the length of the longest HW event in the year and the extreme maximum temperature in HW will increase by 3 times, 1 time and 1.3 °C, respectively, under the RCP4.5 scenario, whilst that under the RCP8.5 scenario will increase by 8 times, 3 times and 3.7 °C, respectively, relative to 1986–2005. The Northwest is regionally projected to suffer long and hot HWs, whilst the South and Southeast will experience frequent consecutive HWs. Thus, HWs projected by the combined dynamical and statistical downscaling method are highly reliable in projecting HWs over China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
期刊最新文献
FGL2172-220 peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment. HLA class II neoantigen presentation for CD4+ T cell surveillance in HLA class II-negative colorectal cancer. Pretreatment With Unfractionated Heparin in ST-Elevation Myocardial Infarction—a Propensity Score Matching Analysis. The Diagnosis and Treatment of Hypertrophic Cardiomyopathy. Clinical Practice Guideline: Condylar Hyperplasia of the Mandible—Diagnosis and Treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1