{"title":"黑山羊瘤胃宏基因组外显型糖基水解酶家族43 α- l -阿拉伯糖醛酸苷酶在巨芽孢杆菌中的重组表达及生化特性研究","authors":"Sazzad Hossen Toushik, Md. Ashrafudoulla","doi":"10.3390/applmicrobiol3040080","DOIUrl":null,"url":null,"abstract":"There is no doubt that ruminants have the capability to digest lignocellulosic compounds and to utilize them as an absorbable form of energy by tapping into enzymes produced by the microbial population in their rumens. Among the rumens of various ruminants, this study focused on Korean goat rumens because of their unique digestibility of lignocellulosic biomasses. Therefore, a novel Gene12 gene was screened and unmasked from the constructed rumen metagenomic library of a Korean black goat and expressed in a Bacillus megaterium system. The recombinant protein was distinguished as a novel α-L-arabinofuranosidase enzyme from glycosyl hydrolase family 43 (GH43) for its capability to hydrolyze the non-reducing end of α-1,5-L-arabinofuranose linkages in α-L-arabinofuranosyl groups. The enzyme can also break apart α-L-arabinofuranosidic linkages and act synergistically with other hemicellulolytic enzymes to release α-1,2- and α-1,3-L-arabinofuranosyl groups from L-arabinose-comprising polysaccharides. In silico, phylogenetic, and computational analyses proclaimed that the Gene12 gene encodes a novel carbohydrate-active enzyme possessing a V-shaped indentation of the GH43 catalytic and functional domain (carbohydrate-binding module 6). The recombinant Gene12 protein has shared 81% sequence homology with other members of the GH43 family. Enzymic synopses (optimal pH, temperatures, and stability studies) of the recombinant Gene12 enzyme and its substrate specificity (synthetic and natural substrates) profiling were considered. The recombinant Gene12 α-L-arabinofuranosidase works best at pH 6.0 and 40 °C, and it is stable at pH 4.0 to 7.0 at temperatures of 20 to 50 °C. Additionally, 5-blended β-sheets were identified through a tertiary (3D) structure analysis along with the high substrate specificity against p-nitrophenyl-D-arabinofuranoside (pNPA). The highest substrate specificity of pNPA for Gene12 α-L-arabinofuranosidase indicated its confirmation as an exo-type arabinofuronidase. The results thus propose using the Gene12 protein as an exo-mannered GH43 α-L-arabinofuranosidase (EC 3.2.1.55) enzyme.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recombinant Expression in Bacillus megaterium and Biochemical Characterization of Exo-Mannered Glycosyl Hydrolase Family 43 α-L-Arabinofuranosidase from the Korean Black Goat Rumen Metagenome\",\"authors\":\"Sazzad Hossen Toushik, Md. Ashrafudoulla\",\"doi\":\"10.3390/applmicrobiol3040080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is no doubt that ruminants have the capability to digest lignocellulosic compounds and to utilize them as an absorbable form of energy by tapping into enzymes produced by the microbial population in their rumens. Among the rumens of various ruminants, this study focused on Korean goat rumens because of their unique digestibility of lignocellulosic biomasses. Therefore, a novel Gene12 gene was screened and unmasked from the constructed rumen metagenomic library of a Korean black goat and expressed in a Bacillus megaterium system. The recombinant protein was distinguished as a novel α-L-arabinofuranosidase enzyme from glycosyl hydrolase family 43 (GH43) for its capability to hydrolyze the non-reducing end of α-1,5-L-arabinofuranose linkages in α-L-arabinofuranosyl groups. The enzyme can also break apart α-L-arabinofuranosidic linkages and act synergistically with other hemicellulolytic enzymes to release α-1,2- and α-1,3-L-arabinofuranosyl groups from L-arabinose-comprising polysaccharides. In silico, phylogenetic, and computational analyses proclaimed that the Gene12 gene encodes a novel carbohydrate-active enzyme possessing a V-shaped indentation of the GH43 catalytic and functional domain (carbohydrate-binding module 6). The recombinant Gene12 protein has shared 81% sequence homology with other members of the GH43 family. Enzymic synopses (optimal pH, temperatures, and stability studies) of the recombinant Gene12 enzyme and its substrate specificity (synthetic and natural substrates) profiling were considered. The recombinant Gene12 α-L-arabinofuranosidase works best at pH 6.0 and 40 °C, and it is stable at pH 4.0 to 7.0 at temperatures of 20 to 50 °C. Additionally, 5-blended β-sheets were identified through a tertiary (3D) structure analysis along with the high substrate specificity against p-nitrophenyl-D-arabinofuranoside (pNPA). The highest substrate specificity of pNPA for Gene12 α-L-arabinofuranosidase indicated its confirmation as an exo-type arabinofuronidase. The results thus propose using the Gene12 protein as an exo-mannered GH43 α-L-arabinofuranosidase (EC 3.2.1.55) enzyme.\",\"PeriodicalId\":8080,\"journal\":{\"name\":\"Applied microbiology\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied microbiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/applmicrobiol3040080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied microbiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/applmicrobiol3040080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
毫无疑问,反刍动物有能力消化木质纤维素化合物,并利用它们作为一种可吸收的能量形式,通过利用它们瘤胃中微生物群体产生的酶。在各种反刍动物的瘤胃中,由于韩国山羊具有独特的木质纤维素生物质消化率,因此本研究重点研究了韩国山羊的瘤胃。因此,从构建的韩国黑山羊瘤胃宏基因组文库中筛选出一个新的Gene12基因,并在巨型芽孢杆菌系统中表达。该重组蛋白能够水解α- l -阿拉伯糖醛基上α-1,5- l -阿拉伯糖醛基键的非还原端,被鉴定为来自糖基水解酶家族43 (GH43)的新型α- l -阿拉伯糖醛基酶。该酶还能分解α- l -阿拉伯糖醛基键,并与其他半纤维素水解酶协同作用,从含l -阿拉伯糖的多糖中释放α-1,2-和α-1,3- l -阿拉伯糖醛基。计算机、系统发育和计算分析表明,Gene12基因编码一种新的碳水化合物活性酶,该酶具有GH43催化和功能域的v形凹痕(碳水化合物结合模块6)。重组基因12蛋白与GH43家族的其他成员具有81%的序列同源性。考虑了重组Gene12酶的酶学概要(最佳pH、温度和稳定性研究)及其底物特异性(合成底物和天然底物)分析。重组Gene12 α- l -阿拉伯糖醛酸苷酶在pH 6.0和40℃条件下工作效果最好,在pH 4.0 ~ 7.0、温度20 ~ 50℃条件下稳定。此外,通过三级(3D)结构分析鉴定了5-混合β-薄片,并对对硝基苯基- d -阿拉伯糖醛酸苷(pNPA)具有高底物特异性。pNPA对基因12 α- l -阿拉伯糖醛酸苷酶的最高底物特异性表明其为外显型阿拉伯糖醛酸苷酶。因此,建议将Gene12蛋白作为外显型GH43 α- l -阿拉伯糖醛酸苷酶(EC 3.2.1.55)酶。
Recombinant Expression in Bacillus megaterium and Biochemical Characterization of Exo-Mannered Glycosyl Hydrolase Family 43 α-L-Arabinofuranosidase from the Korean Black Goat Rumen Metagenome
There is no doubt that ruminants have the capability to digest lignocellulosic compounds and to utilize them as an absorbable form of energy by tapping into enzymes produced by the microbial population in their rumens. Among the rumens of various ruminants, this study focused on Korean goat rumens because of their unique digestibility of lignocellulosic biomasses. Therefore, a novel Gene12 gene was screened and unmasked from the constructed rumen metagenomic library of a Korean black goat and expressed in a Bacillus megaterium system. The recombinant protein was distinguished as a novel α-L-arabinofuranosidase enzyme from glycosyl hydrolase family 43 (GH43) for its capability to hydrolyze the non-reducing end of α-1,5-L-arabinofuranose linkages in α-L-arabinofuranosyl groups. The enzyme can also break apart α-L-arabinofuranosidic linkages and act synergistically with other hemicellulolytic enzymes to release α-1,2- and α-1,3-L-arabinofuranosyl groups from L-arabinose-comprising polysaccharides. In silico, phylogenetic, and computational analyses proclaimed that the Gene12 gene encodes a novel carbohydrate-active enzyme possessing a V-shaped indentation of the GH43 catalytic and functional domain (carbohydrate-binding module 6). The recombinant Gene12 protein has shared 81% sequence homology with other members of the GH43 family. Enzymic synopses (optimal pH, temperatures, and stability studies) of the recombinant Gene12 enzyme and its substrate specificity (synthetic and natural substrates) profiling were considered. The recombinant Gene12 α-L-arabinofuranosidase works best at pH 6.0 and 40 °C, and it is stable at pH 4.0 to 7.0 at temperatures of 20 to 50 °C. Additionally, 5-blended β-sheets were identified through a tertiary (3D) structure analysis along with the high substrate specificity against p-nitrophenyl-D-arabinofuranoside (pNPA). The highest substrate specificity of pNPA for Gene12 α-L-arabinofuranosidase indicated its confirmation as an exo-type arabinofuronidase. The results thus propose using the Gene12 protein as an exo-mannered GH43 α-L-arabinofuranosidase (EC 3.2.1.55) enzyme.