Pub Date : 2024-08-08DOI: 10.3390/applmicrobiol4030082
Yun-Ho Park, Min-Jeong Kwon, Dong-Min Shin, Sam-Pin Lee
Functional vinegar with high γ-aminobutyric acid (GABA) content was manufactured through a two-stage serial co-fermentation of rice wine lees, a by-product of Korean rice wine, using lactic acid bacteria (LAB) and acetic acid bacteria (AAB). The first LAB fermentation elevated GABA content by utilizing monosodium glutamate (MSG) as a precursor. Lactiplantibacillus plantarum KS2020 converted up to 10% of MSG into GABA and indicated a GABA content of 65.49 mg/g. The concentration of LAB-fermented rice wine lees was then optimized for the second co-fermentation, and Acetobacter aceti was used to produce vinegar. Co-fermentation using 40% first LAB-fermented rice wine lees yielded vinegar with 55.34 mg/g acetic acid and 22.61 mg/g GABA. The temperature-dependent reduction in GABA in GABA-enriched vinegar followed the Arrhenius relationship during storage, with an activation energy of 9.94 kcal/mol (20–35 °C, R2 = 0.99). The GABA present in the vinegar showed evidence of a temperature-/time-dependent decrease, decreasing by 40% over five months. This study first proved the higher GABA-enriched vinegar production from rice wine lees using Lb. plantarum KS2020 and A. aceti.
{"title":"Production of Functional Vinegar Enriched with γ-Aminobutyric Acid through Serial Co-Fermentation of Lactic Acid and Acetic Acid Bacteria Using Rice Wine Lees","authors":"Yun-Ho Park, Min-Jeong Kwon, Dong-Min Shin, Sam-Pin Lee","doi":"10.3390/applmicrobiol4030082","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030082","url":null,"abstract":"Functional vinegar with high γ-aminobutyric acid (GABA) content was manufactured through a two-stage serial co-fermentation of rice wine lees, a by-product of Korean rice wine, using lactic acid bacteria (LAB) and acetic acid bacteria (AAB). The first LAB fermentation elevated GABA content by utilizing monosodium glutamate (MSG) as a precursor. Lactiplantibacillus plantarum KS2020 converted up to 10% of MSG into GABA and indicated a GABA content of 65.49 mg/g. The concentration of LAB-fermented rice wine lees was then optimized for the second co-fermentation, and Acetobacter aceti was used to produce vinegar. Co-fermentation using 40% first LAB-fermented rice wine lees yielded vinegar with 55.34 mg/g acetic acid and 22.61 mg/g GABA. The temperature-dependent reduction in GABA in GABA-enriched vinegar followed the Arrhenius relationship during storage, with an activation energy of 9.94 kcal/mol (20–35 °C, R2 = 0.99). The GABA present in the vinegar showed evidence of a temperature-/time-dependent decrease, decreasing by 40% over five months. This study first proved the higher GABA-enriched vinegar production from rice wine lees using Lb. plantarum KS2020 and A. aceti.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"58 49","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141928892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.3390/applmicrobiol4030076
Nikoletta Sameli, E. Sioziou, L. Bosnea, S. Paramithiotis, J. Samelis
A species-specific multiplex-PCR method and phenotypic tests were combined to evaluate biochemical and genotypic differences between 24 representative Leuconostoc mesenteroides diverse isolates previously found to dominate in spoiled, vacuum-packed Anthotyros whey cheeses stored at 4 °C for 40 days and identified by 16S rRNA gene sequencing. Based on their phenotypic (API 50 CHL) profiles, the 24 isolates comprised 6 multi-strain and 7 single-strain biotypes. Only two single-strain biotypes (L4A and L4B) produced slime (dextran) from sucrose, and only four biotypes (L2A–L2C, L3; 7 isolates) fermented L-arabinose; the remaining 15 isolates (biotypes L1A–L1F) were dextran-negative, oligofermenting Ln. mesenteroides variants, able to ferment D-xylose and grow at 37 °C. Based on their multiplex-PCR (rpoB, araA, dsr, and sorA) gene profiles in comparison with those of the type strains of the four Ln. mesenteroides subsp. cremoris (rpoB), dextranicum (rpoB/dsr), mesenteroides (rpoB/araA/dsr/sorA), and jonggajibkimchii (rpoB/araA/dsr), no isolate was assigned to the first two subspecies and only four isolates (L2A and L2C) to the subsp. mesenteroides. Ten isolates shared the subsp. jonggajibkimchii profile, while the other ten ones have a fifth atypical profile (rpoB/dsr/sorA), seemingly being closer to the subsp. dextranicum. Particularly the atypical biotype L1B representatives of the most prevalent psychrotrophic Ln. mesenteroides subsp. jonggajibkimchii (rpoB/araA/dsr) genotype at Anthotyros whey cheese spoilage deserve further biochemical and molecular characterization studies.
{"title":"Multiplex-PCR Detection of an Atypical Leuconostoc mesenteroides subsp. jonggajibkimchii Phenotype Dominating the Terminal Spoilage Microbial Association of a Fresh Greek Whey Cheese Stored at 4 °C in Vacuum","authors":"Nikoletta Sameli, E. Sioziou, L. Bosnea, S. Paramithiotis, J. Samelis","doi":"10.3390/applmicrobiol4030076","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030076","url":null,"abstract":"A species-specific multiplex-PCR method and phenotypic tests were combined to evaluate biochemical and genotypic differences between 24 representative Leuconostoc mesenteroides diverse isolates previously found to dominate in spoiled, vacuum-packed Anthotyros whey cheeses stored at 4 °C for 40 days and identified by 16S rRNA gene sequencing. Based on their phenotypic (API 50 CHL) profiles, the 24 isolates comprised 6 multi-strain and 7 single-strain biotypes. Only two single-strain biotypes (L4A and L4B) produced slime (dextran) from sucrose, and only four biotypes (L2A–L2C, L3; 7 isolates) fermented L-arabinose; the remaining 15 isolates (biotypes L1A–L1F) were dextran-negative, oligofermenting Ln. mesenteroides variants, able to ferment D-xylose and grow at 37 °C. Based on their multiplex-PCR (rpoB, araA, dsr, and sorA) gene profiles in comparison with those of the type strains of the four Ln. mesenteroides subsp. cremoris (rpoB), dextranicum (rpoB/dsr), mesenteroides (rpoB/araA/dsr/sorA), and jonggajibkimchii (rpoB/araA/dsr), no isolate was assigned to the first two subspecies and only four isolates (L2A and L2C) to the subsp. mesenteroides. Ten isolates shared the subsp. jonggajibkimchii profile, while the other ten ones have a fifth atypical profile (rpoB/dsr/sorA), seemingly being closer to the subsp. dextranicum. Particularly the atypical biotype L1B representatives of the most prevalent psychrotrophic Ln. mesenteroides subsp. jonggajibkimchii (rpoB/araA/dsr) genotype at Anthotyros whey cheese spoilage deserve further biochemical and molecular characterization studies.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"67 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141808539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.3390/applmicrobiol4030078
Diego Lisboa Rios, A. Bengoa, Patrícia Costa Lima da Silva, César Silva Santana Moura, G. L. Garrote, A. G. Abraham, Gabriel da Rocha Fernandes, J. R. Nicoli, Elisabeth Neumann, Á. Cantini Nunes
Comparative metatranscriptomics of the bacterial and yeast communities of two milk kefir beverages (MKAA1 and MKAA2) was carried out. They were obtained by fermentation with two different frozen stocks of the kefir grain CIDCA AGK1, differing in rheological features and production of organic acids. We hypothesised that the differences in their physicochemical and rheological properties might be due to the microbial activity in each product. The dominance of lactic acid bacteria, yeast, and a marginal amount of acetic acid bacteria characterised the microbiome. The bacterial families Lactobacillaceae and Streptococcaceae accounted for almost all of the bacterial gene transcripts, with Lactobacillus helveticus, L. kefiranofaciens, L. gallinarum, and Lactococcus lactis being most frequent in the microbiome of the MKAA1 beverage and L. kefiranofaciens, Lc. Lactis, and Leuconostoc mesenteroides being the most prevalent in MKAA2. Dipodascaceae and Saccharomycetaceae were the leading yeast families, represented by Yarrowia lipolytica, Saccharomyces unisporus, and Kluyveromyces marxianus. MKAA1 and MKAA2 shared >75% KEGG Ortologs (KOs) in their bacteria and yeast libraries. The considerable decreases in total expressed genes (KEGG Ortologs) assigned to Lactobacillus helveticus and L. gallinarum might be related to the variations in the rheological features of the beverages, probably by compromising the interrelations with L. kefiranofaciens, which might explain the variations in the rheological features of the beverages.
{"title":"Metatranscriptomic Analysis of Argentinian Kefirs Varying in Apparent Viscosity","authors":"Diego Lisboa Rios, A. Bengoa, Patrícia Costa Lima da Silva, César Silva Santana Moura, G. L. Garrote, A. G. Abraham, Gabriel da Rocha Fernandes, J. R. Nicoli, Elisabeth Neumann, Á. Cantini Nunes","doi":"10.3390/applmicrobiol4030078","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030078","url":null,"abstract":"Comparative metatranscriptomics of the bacterial and yeast communities of two milk kefir beverages (MKAA1 and MKAA2) was carried out. They were obtained by fermentation with two different frozen stocks of the kefir grain CIDCA AGK1, differing in rheological features and production of organic acids. We hypothesised that the differences in their physicochemical and rheological properties might be due to the microbial activity in each product. The dominance of lactic acid bacteria, yeast, and a marginal amount of acetic acid bacteria characterised the microbiome. The bacterial families Lactobacillaceae and Streptococcaceae accounted for almost all of the bacterial gene transcripts, with Lactobacillus helveticus, L. kefiranofaciens, L. gallinarum, and Lactococcus lactis being most frequent in the microbiome of the MKAA1 beverage and L. kefiranofaciens, Lc. Lactis, and Leuconostoc mesenteroides being the most prevalent in MKAA2. Dipodascaceae and Saccharomycetaceae were the leading yeast families, represented by Yarrowia lipolytica, Saccharomyces unisporus, and Kluyveromyces marxianus. MKAA1 and MKAA2 shared >75% KEGG Ortologs (KOs) in their bacteria and yeast libraries. The considerable decreases in total expressed genes (KEGG Ortologs) assigned to Lactobacillus helveticus and L. gallinarum might be related to the variations in the rheological features of the beverages, probably by compromising the interrelations with L. kefiranofaciens, which might explain the variations in the rheological features of the beverages.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"53 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141806882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-24DOI: 10.3390/applmicrobiol4030077
Chibuzo Linda Ekwuazi, F. Ogbo, A. Stöger, W. Ruppitsch, Adriana Cabal Rosel
According to a report by the World Health Organization (WHO), each year, over 550 million individuals worldwide suffer from and 230,000 die from diarrheal illnesses, which accounts for more than half of the global foodborne disease burden. Among them, children face a heightened vulnerability, with approximately 220 million falling ill and 96,000 succumbing to these diseases annually. This work aimed to study the genomic characterization of selected E. coli strains from catfish (Clarias (C.) gariepinus) caught from the Onitsha North axis of the River Niger in Anambra state, Nigeria. A total of 50 fish were randomly purchased from different fishermen over a period of four months. Samples that comprised six different organs (skin, flesh, gills, gonads, guts, and liver) were screened for E. coli strains using cultural and biochemical methods. Multilocus sequence typing (MLST) and core genome (cg)MLST were performed using Ridom SeqSphere+ software. The aerobic plate count (APC) and coliform count ranged from 0.5 × 104 to 3.7 × 104 cfu/g and 0 to 3.0 × 104 cfu/g, respectively. Whole-genome sequencing (WGS) confirmed the presence of E. coli and Klebsiella quasipneumoniae isolates in our samples. We could identify only two serotypes (O102:H7 and O40:H4) of E. coli. Antimicrobial resistance genes (ARGs) and point mutations that conferred antibiotic resistance were extracted from the genome assemblies. Good hygiene is recommended to avoid the cross-contamination of raw C. gariepinus with ready-to-eat food.
{"title":"Genomic Characterization of Selected Escherichia coli Strains from Catfish (Clarias gariepinus) in Nigeria","authors":"Chibuzo Linda Ekwuazi, F. Ogbo, A. Stöger, W. Ruppitsch, Adriana Cabal Rosel","doi":"10.3390/applmicrobiol4030077","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030077","url":null,"abstract":"According to a report by the World Health Organization (WHO), each year, over 550 million individuals worldwide suffer from and 230,000 die from diarrheal illnesses, which accounts for more than half of the global foodborne disease burden. Among them, children face a heightened vulnerability, with approximately 220 million falling ill and 96,000 succumbing to these diseases annually. This work aimed to study the genomic characterization of selected E. coli strains from catfish (Clarias (C.) gariepinus) caught from the Onitsha North axis of the River Niger in Anambra state, Nigeria. A total of 50 fish were randomly purchased from different fishermen over a period of four months. Samples that comprised six different organs (skin, flesh, gills, gonads, guts, and liver) were screened for E. coli strains using cultural and biochemical methods. Multilocus sequence typing (MLST) and core genome (cg)MLST were performed using Ridom SeqSphere+ software. The aerobic plate count (APC) and coliform count ranged from 0.5 × 104 to 3.7 × 104 cfu/g and 0 to 3.0 × 104 cfu/g, respectively. Whole-genome sequencing (WGS) confirmed the presence of E. coli and Klebsiella quasipneumoniae isolates in our samples. We could identify only two serotypes (O102:H7 and O40:H4) of E. coli. Antimicrobial resistance genes (ARGs) and point mutations that conferred antibiotic resistance were extracted from the genome assemblies. Good hygiene is recommended to avoid the cross-contamination of raw C. gariepinus with ready-to-eat food.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"22 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141806273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Strawberry cultivation holds significant economic and social promise within Peruvian fruit production. However, conventional management practices have led to the excessive use of agrochemicals in this crop. This study proposes an organic approach to strawberry production, integrating less environmentally harmful technologies. The aim was to assess microbial inoculation by using Trichoderma sp. and Pseudomonas putida and the application of organic amendments on strawberry seedlings of the commercial cultivar “San Andreas”. A field experiment was established with evaluations in the vegetative and productive stages. Results indicate that the co-inoculation of Trichoderma sp. and Pseudomonas putida increased leaf area by 7%, and enhanced the aerial part’s fresh and dry biomass by 13% and 28%, respectively, compared to treatment without microbial inoculation. Concurrently, compost application increased the leaf number and aerial dry biomass by 22% and 19% at the end of the vegetative stage, respectively, compared to treatment without organic amendment. In addition, it reduced the days for flowering, maintaining the fruit’s physicochemical attributes. Regarding yield, the amendments application significantly enhanced fruit weight per plant by 40%, especially when applied together with Trichoderma sp., and co-inoculation increased the number of fruits per meter square by 22%. These findings highlight the potential of technologies such as microbial inoculation and organic amendments to enhance strawberry yields and to gradually reduce the use of synthetic fertilizers.
{"title":"Interaction between Trichoderma sp., Pseudomonas putida, and Two Organic Amendments on the Yield and Quality of Strawberries (Fragaria x annanasa cv. San Andreas) in the Huaral Region, Peru","authors":"Lucero Huasasquiche, Thania Ccori, Leonela Alejandro, Héctor Cántaro-Segura, Tomás Samaniego, Richard Solórzano","doi":"10.3390/applmicrobiol4030075","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030075","url":null,"abstract":"Strawberry cultivation holds significant economic and social promise within Peruvian fruit production. However, conventional management practices have led to the excessive use of agrochemicals in this crop. This study proposes an organic approach to strawberry production, integrating less environmentally harmful technologies. The aim was to assess microbial inoculation by using Trichoderma sp. and Pseudomonas putida and the application of organic amendments on strawberry seedlings of the commercial cultivar “San Andreas”. A field experiment was established with evaluations in the vegetative and productive stages. Results indicate that the co-inoculation of Trichoderma sp. and Pseudomonas putida increased leaf area by 7%, and enhanced the aerial part’s fresh and dry biomass by 13% and 28%, respectively, compared to treatment without microbial inoculation. Concurrently, compost application increased the leaf number and aerial dry biomass by 22% and 19% at the end of the vegetative stage, respectively, compared to treatment without organic amendment. In addition, it reduced the days for flowering, maintaining the fruit’s physicochemical attributes. Regarding yield, the amendments application significantly enhanced fruit weight per plant by 40%, especially when applied together with Trichoderma sp., and co-inoculation increased the number of fruits per meter square by 22%. These findings highlight the potential of technologies such as microbial inoculation and organic amendments to enhance strawberry yields and to gradually reduce the use of synthetic fertilizers.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"32 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141816907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-20DOI: 10.3390/applmicrobiol4030074
Julia Mitzscherling, Anja M. Schleicher, S. Genderjahn, Marie Bonitz, Dirk Wagner
Because of its swelling capacity, compacted bentonite clay is a suitable buffer material in deep geological repositories for high-level nuclear waste. However, this only applies if the swelling capacity is maintained. Accordingly, bentonites have to be stable to changing temperature, humidity, infiltrating fluids or microbial activity. In batch experiments, we investigated combined microbial and thermo-hydro-geochemical effects on the swelling capacity of uncompacted bentonite MX-80. Bentonite was exposed to fluids of different ionic strength and the bacterium Stenotrophomonas bentonitica. Bacterial growth was monitored by counting colony-forming units while the swelling capacity of bentonite was evaluated using in situ XRD at varied temperatures and humidity. The presence of bentonite prolonged the survival of S. bentonitica. However, electron microscopy, XRD and ICP-OES analyses showed neither an interaction of S. bentonitica with bentonite, nor significant changes in the swelling capacity or element composition. The swelling capacity and diffraction peak intensity were, however, strongly reduced by the ionic strength of the fluid and the exposure time. The study highlights that bentonite is affected by thermo-hydro-geochemical and microbial processes to different degrees and that the complexity of different co-occurring factors in potential nuclear waste repositories is important to consider in safety assessments.
由于具有膨胀能力,压实膨润土是高放射性核废料深层地质处置库的合适缓冲材料。然而,这只适用于保持膨胀能力的情况。因此,膨润土必须对不断变化的温度、湿度、渗透流体或微生物活动保持稳定。在批量实验中,我们研究了微生物和热-水-地球化学对未压实膨润土 MX-80 膨胀能力的综合影响。膨润土暴露在不同离子强度的液体和膨润土菌中。在不同的温度和湿度条件下,通过计数菌落形成单位监测细菌的生长情况,同时使用原位 XRD 评估膨润土的膨胀能力。膨润土的存在延长了 S. bentonitica 的存活时间。然而,电子显微镜、X 射线衍射和 ICP-OES 分析表明,膨润土既没有与 S. bentonitica 发生相互作用,其膨胀能力或元素组成也没有发生显著变化。不过,膨胀能力和衍射峰强度受液体离子强度和暴露时间的影响而大大降低。这项研究突出表明,膨润土在不同程度上受到热-水-地球化学和微生物过程的影响,潜在核废料储存库中不同共存因素的复杂性是安全评估中需要考虑的重要因素。
{"title":"Assessing the Microbial Impact on the Performance of Bentonite Clay at Different Thermo-Hydro-Geochemical Conditions","authors":"Julia Mitzscherling, Anja M. Schleicher, S. Genderjahn, Marie Bonitz, Dirk Wagner","doi":"10.3390/applmicrobiol4030074","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030074","url":null,"abstract":"Because of its swelling capacity, compacted bentonite clay is a suitable buffer material in deep geological repositories for high-level nuclear waste. However, this only applies if the swelling capacity is maintained. Accordingly, bentonites have to be stable to changing temperature, humidity, infiltrating fluids or microbial activity. In batch experiments, we investigated combined microbial and thermo-hydro-geochemical effects on the swelling capacity of uncompacted bentonite MX-80. Bentonite was exposed to fluids of different ionic strength and the bacterium Stenotrophomonas bentonitica. Bacterial growth was monitored by counting colony-forming units while the swelling capacity of bentonite was evaluated using in situ XRD at varied temperatures and humidity. The presence of bentonite prolonged the survival of S. bentonitica. However, electron microscopy, XRD and ICP-OES analyses showed neither an interaction of S. bentonitica with bentonite, nor significant changes in the swelling capacity or element composition. The swelling capacity and diffraction peak intensity were, however, strongly reduced by the ionic strength of the fluid and the exposure time. The study highlights that bentonite is affected by thermo-hydro-geochemical and microbial processes to different degrees and that the complexity of different co-occurring factors in potential nuclear waste repositories is important to consider in safety assessments.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"114 33","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141820379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-15DOI: 10.3390/applmicrobiol4030073
Douglas B. McIlwaine, Mackenzie Moore, Alexsandra Corrigan, Benjamin Niemaseck, Danika Nicoletti
Culture-dependent and culture-independent microbiological methods are two approaches used to study microbial community composition. Culture-dependent methods have been the standard method used for many years but have limited utility with unculturable microorganisms. Culture-independent methods, including molecular techniques, enable direct analysis of microbial DNA without requiring cultivation. Both culture-dependent and -independent methods have roles in advancing our understanding of microbiology, and a combination of these approaches often yields a comprehensive depiction of the microbial diversity within a dynamic system. Bacterial activity reaction tests (BARTs) are a common culture-dependent test used to identify bacteria growing in industrial water samples. In this study, next-generation sequencing (NGS) was used to identify the taxa growing in BARTs and compared with the BART reaction patterns. Additionally, several water samples were analyzed by both BART and NGS analysis to determine whether the bacteria found in the water were also present in the BARTs. The results showed overall agreement between NGS and BARTs, though, in some cases, the most abundant taxa found in the water samples differed from those in the BARTs. This highlights the need for further study into the microbial community dynamics of culture-dependent tests to determine whether they are representative of the original sample.
{"title":"A Comparison of the Microbial Populations in a Culture-Dependent and a Culture-Independent Analysis of Industrial Water Samples","authors":"Douglas B. McIlwaine, Mackenzie Moore, Alexsandra Corrigan, Benjamin Niemaseck, Danika Nicoletti","doi":"10.3390/applmicrobiol4030073","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030073","url":null,"abstract":"Culture-dependent and culture-independent microbiological methods are two approaches used to study microbial community composition. Culture-dependent methods have been the standard method used for many years but have limited utility with unculturable microorganisms. Culture-independent methods, including molecular techniques, enable direct analysis of microbial DNA without requiring cultivation. Both culture-dependent and -independent methods have roles in advancing our understanding of microbiology, and a combination of these approaches often yields a comprehensive depiction of the microbial diversity within a dynamic system. Bacterial activity reaction tests (BARTs) are a common culture-dependent test used to identify bacteria growing in industrial water samples. In this study, next-generation sequencing (NGS) was used to identify the taxa growing in BARTs and compared with the BART reaction patterns. Additionally, several water samples were analyzed by both BART and NGS analysis to determine whether the bacteria found in the water were also present in the BARTs. The results showed overall agreement between NGS and BARTs, though, in some cases, the most abundant taxa found in the water samples differed from those in the BARTs. This highlights the need for further study into the microbial community dynamics of culture-dependent tests to determine whether they are representative of the original sample.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"52 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141644392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-09DOI: 10.3390/applmicrobiol4030072
Amanda Lucía Mora Martínez, María Yepes-Pérez, Karent Alexandra Carrero Contreras, Paola Eliana Zapata Moreno
The Bacillus megaterium LVN01 species native to Colombia has demonstrated the ability to metabolize different coproducts or industrial waste (such as fique juice, cane molasses, and residual glycerol) and accumulate polyhydroxybutyrate (PHB), giving it potential in the bioplastics industry. In this research, the potential of liquid digestate as a carbon source for the production of PHA polymers in fermentation processes with this bacterial strain was evaluated. Favorably, it was found that B. megaterium utilizes the nutrients from this residual substrate to multiply appropriately and efficiently synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Bench-scale aerobic batch fermentation, under the operational conditions of this research [volume: 3 L; temperature: 30.8 °C; agitation: 400 rpm; pH: 7.0 ± 0.2; dissolved oxygen: 100% saturation; antifoam: 10% (v/v)], generated maximum values of dry cell weight (DCW) (0.56 g cell L−1) at 60 h, while the maximum PHBV yield (360 mg PHBV L−1) occurred at 16 h, which is very favorable for sustainable degradable bioplastics production. Additionally, GC–MS and NMR analyses confirmed that the PHBV copolymer synthesized by B. megaterium is made up of the monomers 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Furthermore, the thermal properties determined by TGA (Tonset = 283.1 °C; Tendset = 296.98 °C; Td = 290.114 °C) and DSC (Tm = °C 155.7 °C; ΔHf = 19.80 J g−1; Xcr = 18.17%) indicate that it is a thermally stable biopolymer with low percentages of crystallinity, providing flexibility that facilitates molding, adaptation, and application in various industrial sectors.
{"title":"Production of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) by Bacillus megaterium LVN01 Using Biogas Digestate","authors":"Amanda Lucía Mora Martínez, María Yepes-Pérez, Karent Alexandra Carrero Contreras, Paola Eliana Zapata Moreno","doi":"10.3390/applmicrobiol4030072","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030072","url":null,"abstract":"The Bacillus megaterium LVN01 species native to Colombia has demonstrated the ability to metabolize different coproducts or industrial waste (such as fique juice, cane molasses, and residual glycerol) and accumulate polyhydroxybutyrate (PHB), giving it potential in the bioplastics industry. In this research, the potential of liquid digestate as a carbon source for the production of PHA polymers in fermentation processes with this bacterial strain was evaluated. Favorably, it was found that B. megaterium utilizes the nutrients from this residual substrate to multiply appropriately and efficiently synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Bench-scale aerobic batch fermentation, under the operational conditions of this research [volume: 3 L; temperature: 30.8 °C; agitation: 400 rpm; pH: 7.0 ± 0.2; dissolved oxygen: 100% saturation; antifoam: 10% (v/v)], generated maximum values of dry cell weight (DCW) (0.56 g cell L−1) at 60 h, while the maximum PHBV yield (360 mg PHBV L−1) occurred at 16 h, which is very favorable for sustainable degradable bioplastics production. Additionally, GC–MS and NMR analyses confirmed that the PHBV copolymer synthesized by B. megaterium is made up of the monomers 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV). Furthermore, the thermal properties determined by TGA (Tonset = 283.1 °C; Tendset = 296.98 °C; Td = 290.114 °C) and DSC (Tm = °C 155.7 °C; ΔHf = 19.80 J g−1; Xcr = 18.17%) indicate that it is a thermally stable biopolymer with low percentages of crystallinity, providing flexibility that facilitates molding, adaptation, and application in various industrial sectors.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"113 36","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141665924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-07DOI: 10.3390/applmicrobiol4030071
Samira Islas-Valdez, Antisar Afkairin, Benjamin Rovner, Jorge M. Vivanco
This study addresses the challenge of finding novel ways to solubilize phosphorus and zinc for agricultural purposes. The aim was to isolate PSMs (phosphorous-solubilizing microbes) and ZnSMs (zinc-solubilizing microbes) from different environments (e.g., soil amendments, land uses, and crop rotation systems) and evaluate their ability to solubilize different insoluble P sources (e.g., β-tricalcium phosphate (β-TCP), calcium-phytate (CaP), and rock phosphate (RP)) and Zn sources (e.g., zinc carbonate (ZnC), zinc oxide (ZnO), and zinc phosphate (ZnP)). Here, 25 isolates capable of solubilizing either P or Zn sources were isolated and classified by species using 16S rRNA and ITS-region sequencing. Notably, Aspergillus awamori, Fusarium circinatum, Fusarium longifundum, and Mucor circinelloides, isolated from cultivated soils and soil amendments, emerged as the most efficient PSMs and ZnSMs. Mucor circinelloides exhibited the highest solubilization ability for broths containing β-TCP, CaP, RP, ZnO, and ZnP, with log2-fold changes of 3.7, 1.8, 8.9, 7.8, and 2.4, respectively, compared to the control. For ZnC and ZnO, Aspergillus awamori displayed the highest Zn solubilization, with a 2.1 and 3.0 log2-fold change. The study highlights the potential of these strains as biofertilizers and underscores the role of Mucor and Fusarium genera in zinc solubilization.
{"title":"Isolation of Diverse Phosphate- and Zinc-Solubilizing Microorganisms from Different Environments","authors":"Samira Islas-Valdez, Antisar Afkairin, Benjamin Rovner, Jorge M. Vivanco","doi":"10.3390/applmicrobiol4030071","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030071","url":null,"abstract":"This study addresses the challenge of finding novel ways to solubilize phosphorus and zinc for agricultural purposes. The aim was to isolate PSMs (phosphorous-solubilizing microbes) and ZnSMs (zinc-solubilizing microbes) from different environments (e.g., soil amendments, land uses, and crop rotation systems) and evaluate their ability to solubilize different insoluble P sources (e.g., β-tricalcium phosphate (β-TCP), calcium-phytate (CaP), and rock phosphate (RP)) and Zn sources (e.g., zinc carbonate (ZnC), zinc oxide (ZnO), and zinc phosphate (ZnP)). Here, 25 isolates capable of solubilizing either P or Zn sources were isolated and classified by species using 16S rRNA and ITS-region sequencing. Notably, Aspergillus awamori, Fusarium circinatum, Fusarium longifundum, and Mucor circinelloides, isolated from cultivated soils and soil amendments, emerged as the most efficient PSMs and ZnSMs. Mucor circinelloides exhibited the highest solubilization ability for broths containing β-TCP, CaP, RP, ZnO, and ZnP, with log2-fold changes of 3.7, 1.8, 8.9, 7.8, and 2.4, respectively, compared to the control. For ZnC and ZnO, Aspergillus awamori displayed the highest Zn solubilization, with a 2.1 and 3.0 log2-fold change. The study highlights the potential of these strains as biofertilizers and underscores the role of Mucor and Fusarium genera in zinc solubilization.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":" 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141671342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.3390/applmicrobiol4030070
D. I. Koukoumaki, S. Papanikolaou, Zacharias Ioannou, K. Gkatzionis, D. Sarris
The production of value-added products from microorganisms, such as single-cell protein (SCP), through the valorization of agricultural byproducts enhances circular economy while offering alternative solutions for waste treatment. In this study, SCP was obtained through the biotechnological treatment and valorization of cheese whey, the main byproduct of the dairy industry, for the development of novel edible films. To the best of the authors’ knowledge, this is the first report examining SCP as a biopolymer for edible film production. Specifically, Kluyveromyces marxianus, which has gained QPS and GRAS status, strain EXF-5288 cultivated in deproteinized cheese whey (DCW) lactose (10.0 g/L) in a 3 L fed-batch bioreactor, resulting in a SCPmax of 2.63 g/L with a protein content of up to 49.1% w/w. The addition of increased glycerol concentrations (30, 40, and 50% w/w of dry cells) as plasticizers was examined to develop SCP-based edible films. Regarding physicochemical characterization, increased glycerol concentration significantly increased moisture content (MC%) and solubility (S%), but there was not a significant difference in other parameters. Regarding wettability, SCP-based films could be described as oleophilic surfaces since the degree of oil contact angle (OCA) ranged between 46.7° ± 1.3 and 54.0° ± 0.5. The proposed holistic approach could contribute to the development of sustainable packaging materials through waste treatment.
{"title":"The Development of Novel Edible Films from Single-Cell Protein Produced by the Biotechnological Valorization of Cheese Whey","authors":"D. I. Koukoumaki, S. Papanikolaou, Zacharias Ioannou, K. Gkatzionis, D. Sarris","doi":"10.3390/applmicrobiol4030070","DOIUrl":"https://doi.org/10.3390/applmicrobiol4030070","url":null,"abstract":"The production of value-added products from microorganisms, such as single-cell protein (SCP), through the valorization of agricultural byproducts enhances circular economy while offering alternative solutions for waste treatment. In this study, SCP was obtained through the biotechnological treatment and valorization of cheese whey, the main byproduct of the dairy industry, for the development of novel edible films. To the best of the authors’ knowledge, this is the first report examining SCP as a biopolymer for edible film production. Specifically, Kluyveromyces marxianus, which has gained QPS and GRAS status, strain EXF-5288 cultivated in deproteinized cheese whey (DCW) lactose (10.0 g/L) in a 3 L fed-batch bioreactor, resulting in a SCPmax of 2.63 g/L with a protein content of up to 49.1% w/w. The addition of increased glycerol concentrations (30, 40, and 50% w/w of dry cells) as plasticizers was examined to develop SCP-based edible films. Regarding physicochemical characterization, increased glycerol concentration significantly increased moisture content (MC%) and solubility (S%), but there was not a significant difference in other parameters. Regarding wettability, SCP-based films could be described as oleophilic surfaces since the degree of oil contact angle (OCA) ranged between 46.7° ± 1.3 and 54.0° ± 0.5. The proposed holistic approach could contribute to the development of sustainable packaging materials through waste treatment.","PeriodicalId":8080,"journal":{"name":"Applied microbiology","volume":"109 s420","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141682945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}