{"title":"GTAW熔焊TC4钛合金/304不锈钢异种接头连接机理演变","authors":"Xiaohu Hao, Xinlong Wei, Shuhua Li, Zeqin Cui, Wenxian Wang, Honggang Dong, Weiguo Li","doi":"10.1080/13621718.2023.2264572","DOIUrl":null,"url":null,"abstract":"AbstractGas tungsten arc welding with a pure Cu filler wire was carried out to join the TC4 titanium alloy and 304 stainless steel. Filling pure Cu filler wire assisted with regulating welding current could effectively restrain the concentrated generation of Ti–Fe brittle intermetallic compounds. Three joining modes exist in the fusion welding titanium alloy and stainless steel. In the partial fusion welding mode, the TiCu phase decreased and the fine granular τ2 phase formed in the Ti/Cu interfacial zone, simultaneously, the molten zone consisted of a Cu solid solution and α-(Fe, Cr) phase formed at the Cu/Fe interface, resulting in mechanical interlocking effect and consequent high tensile strength of 363 MPa. Increasing the welding current would lead to the alloying of TixCuy phases, and then enhance the Ti/Cu interface.KEYWORDS: Titanium alloy/stainless steel dissimilar jointinterfacial joining mechanismintermetallic compoundsmicrostructuretensile strength Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was financially supported by the National Natural Science Foundation of China [grant number 52105389] and the Fundamental Research Program of Shanxi Province [grant number 20210302124113].","PeriodicalId":21729,"journal":{"name":"Science and Technology of Welding and Joining","volume":"299 1","pages":"0"},"PeriodicalIF":3.1000,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joining mechanism evolution of fusion welded TC4 titanium alloy/304 stainless steel dissimilar joint by GTAW\",\"authors\":\"Xiaohu Hao, Xinlong Wei, Shuhua Li, Zeqin Cui, Wenxian Wang, Honggang Dong, Weiguo Li\",\"doi\":\"10.1080/13621718.2023.2264572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractGas tungsten arc welding with a pure Cu filler wire was carried out to join the TC4 titanium alloy and 304 stainless steel. Filling pure Cu filler wire assisted with regulating welding current could effectively restrain the concentrated generation of Ti–Fe brittle intermetallic compounds. Three joining modes exist in the fusion welding titanium alloy and stainless steel. In the partial fusion welding mode, the TiCu phase decreased and the fine granular τ2 phase formed in the Ti/Cu interfacial zone, simultaneously, the molten zone consisted of a Cu solid solution and α-(Fe, Cr) phase formed at the Cu/Fe interface, resulting in mechanical interlocking effect and consequent high tensile strength of 363 MPa. Increasing the welding current would lead to the alloying of TixCuy phases, and then enhance the Ti/Cu interface.KEYWORDS: Titanium alloy/stainless steel dissimilar jointinterfacial joining mechanismintermetallic compoundsmicrostructuretensile strength Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was financially supported by the National Natural Science Foundation of China [grant number 52105389] and the Fundamental Research Program of Shanxi Province [grant number 20210302124113].\",\"PeriodicalId\":21729,\"journal\":{\"name\":\"Science and Technology of Welding and Joining\",\"volume\":\"299 1\",\"pages\":\"0\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology of Welding and Joining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13621718.2023.2264572\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Welding and Joining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13621718.2023.2264572","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Joining mechanism evolution of fusion welded TC4 titanium alloy/304 stainless steel dissimilar joint by GTAW
AbstractGas tungsten arc welding with a pure Cu filler wire was carried out to join the TC4 titanium alloy and 304 stainless steel. Filling pure Cu filler wire assisted with regulating welding current could effectively restrain the concentrated generation of Ti–Fe brittle intermetallic compounds. Three joining modes exist in the fusion welding titanium alloy and stainless steel. In the partial fusion welding mode, the TiCu phase decreased and the fine granular τ2 phase formed in the Ti/Cu interfacial zone, simultaneously, the molten zone consisted of a Cu solid solution and α-(Fe, Cr) phase formed at the Cu/Fe interface, resulting in mechanical interlocking effect and consequent high tensile strength of 363 MPa. Increasing the welding current would lead to the alloying of TixCuy phases, and then enhance the Ti/Cu interface.KEYWORDS: Titanium alloy/stainless steel dissimilar jointinterfacial joining mechanismintermetallic compoundsmicrostructuretensile strength Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis work was financially supported by the National Natural Science Foundation of China [grant number 52105389] and the Fundamental Research Program of Shanxi Province [grant number 20210302124113].
期刊介绍:
Science and Technology of Welding and Joining is an international peer-reviewed journal covering both the basic science and applied technology of welding and joining.
Its comprehensive scope encompasses all welding and joining techniques (brazing, soldering, mechanical joining, etc.) and aspects such as characterisation of heat sources, mathematical modelling of transport phenomena, weld pool solidification, phase transformations in weldments, microstructure-property relationships, welding processes, weld sensing, control and automation, neural network applications, and joining of advanced materials, including plastics and composites.