高速电梯轿厢系统水平振动的模糊滑模自抗扰控制方法研究

IF 0.4 4区 计算机科学 Q4 AUTOMATION & CONTROL SYSTEMS Control Engineering and Applied Informatics Pub Date : 2023-06-28 DOI:10.61416/ceai.v25i2.8336
Qinghua Ge, Lulu Zhang, Hua Li, Qin He, Ruijun Zhang
{"title":"高速电梯轿厢系统水平振动的模糊滑模自抗扰控制方法研究","authors":"Qinghua Ge, Lulu Zhang, Hua Li, Qin He, Ruijun Zhang","doi":"10.61416/ceai.v25i2.8336","DOIUrl":null,"url":null,"abstract":"To effectively control the horizontal vibration of high-speed elevator car system caused by the factors such as the irregularity of the guide rail and the nonlinearity of spring-damping in guide shoes, this paper proposes an active disturbance rejection (ADR) control method based on fuzzy sliding mode. Firstly, considering the nonlinear characteristics of the spring-damping in the guide shoes, the horizontal vibration dynamic model of the elevator car system is established. Then, the guide rail excitation and the linear and nonlinear disturbances of the car are summarized into the total disturbances of the car system, which can be estimated by the designed extended state observer. On this basis, a sliding mode active disturbance rejection (SADR) control is presented, which makes the anti-vibration and anti-disturbance control of the car system highly robust. For the chattering problem caused by sliding mode control, the fuzzy control method is designed to eliminate it, and the fuzzy sliding mode active disturbance rejection (FSADR) control for the horizontal vibration of the car system is further realized. Finally, MATLAB/Simulink is utilized for simulation tests. The simulation results show that, compared with ADR and SMADR, the root mean square value, maximum value and A95 peak value of horizontal vibration acceleration through FSADR are significantly reduced. Therefore, the FSARC control method designed in this paper can effectively suppress the horizontal vibration generated during the operation of high-speed elevators. DOI: 10.61416/ceai.v25i2.8336","PeriodicalId":50616,"journal":{"name":"Control Engineering and Applied Informatics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on Fuzzy Sliding Mode Active Disturbance Rejection Control Method for Horizontal Vibration of High-Speed Elevator Car System\",\"authors\":\"Qinghua Ge, Lulu Zhang, Hua Li, Qin He, Ruijun Zhang\",\"doi\":\"10.61416/ceai.v25i2.8336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To effectively control the horizontal vibration of high-speed elevator car system caused by the factors such as the irregularity of the guide rail and the nonlinearity of spring-damping in guide shoes, this paper proposes an active disturbance rejection (ADR) control method based on fuzzy sliding mode. Firstly, considering the nonlinear characteristics of the spring-damping in the guide shoes, the horizontal vibration dynamic model of the elevator car system is established. Then, the guide rail excitation and the linear and nonlinear disturbances of the car are summarized into the total disturbances of the car system, which can be estimated by the designed extended state observer. On this basis, a sliding mode active disturbance rejection (SADR) control is presented, which makes the anti-vibration and anti-disturbance control of the car system highly robust. For the chattering problem caused by sliding mode control, the fuzzy control method is designed to eliminate it, and the fuzzy sliding mode active disturbance rejection (FSADR) control for the horizontal vibration of the car system is further realized. Finally, MATLAB/Simulink is utilized for simulation tests. The simulation results show that, compared with ADR and SMADR, the root mean square value, maximum value and A95 peak value of horizontal vibration acceleration through FSADR are significantly reduced. Therefore, the FSARC control method designed in this paper can effectively suppress the horizontal vibration generated during the operation of high-speed elevators. DOI: 10.61416/ceai.v25i2.8336\",\"PeriodicalId\":50616,\"journal\":{\"name\":\"Control Engineering and Applied Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Control Engineering and Applied Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61416/ceai.v25i2.8336\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering and Applied Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61416/ceai.v25i2.8336","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为了有效控制高速电梯轿厢系统因导轨不平顺性和导轨鞋弹簧阻尼非线性等因素引起的水平振动,提出了一种基于模糊滑模的自抗扰(ADR)控制方法。首先,考虑导靴弹簧阻尼的非线性特性,建立了电梯轿厢系统水平振动动力学模型;然后,将导轨激励和小车的线性和非线性扰动归纳为小车系统的总扰动,并利用所设计的扩展状态观测器进行估计。在此基础上,提出了一种滑模自抗扰(SADR)控制方法,使汽车系统的抗振、抗扰控制具有很强的鲁棒性。针对滑模控制引起的抖振问题,设计了模糊控制方法加以消除,进一步实现了汽车系统水平振动的模糊滑模自抗扰(FSADR)控制。最后利用MATLAB/Simulink进行仿真测试。仿真结果表明,与ADR和SMADR相比,FSADR显著降低了水平振动加速度的均方根值、最大值和A95峰值。因此,本文设计的FSARC控制方法可以有效抑制高速电梯运行过程中产生的水平振动。DOI: 10.61416 / ceai.v25i2.8336
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Fuzzy Sliding Mode Active Disturbance Rejection Control Method for Horizontal Vibration of High-Speed Elevator Car System
To effectively control the horizontal vibration of high-speed elevator car system caused by the factors such as the irregularity of the guide rail and the nonlinearity of spring-damping in guide shoes, this paper proposes an active disturbance rejection (ADR) control method based on fuzzy sliding mode. Firstly, considering the nonlinear characteristics of the spring-damping in the guide shoes, the horizontal vibration dynamic model of the elevator car system is established. Then, the guide rail excitation and the linear and nonlinear disturbances of the car are summarized into the total disturbances of the car system, which can be estimated by the designed extended state observer. On this basis, a sliding mode active disturbance rejection (SADR) control is presented, which makes the anti-vibration and anti-disturbance control of the car system highly robust. For the chattering problem caused by sliding mode control, the fuzzy control method is designed to eliminate it, and the fuzzy sliding mode active disturbance rejection (FSADR) control for the horizontal vibration of the car system is further realized. Finally, MATLAB/Simulink is utilized for simulation tests. The simulation results show that, compared with ADR and SMADR, the root mean square value, maximum value and A95 peak value of horizontal vibration acceleration through FSADR are significantly reduced. Therefore, the FSARC control method designed in this paper can effectively suppress the horizontal vibration generated during the operation of high-speed elevators. DOI: 10.61416/ceai.v25i2.8336
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
22.20%
发文量
0
审稿时长
6 months
期刊介绍: The Journal is promoting theoretical and practical results in a large research field of Control Engineering and Technical Informatics. It has been published since 1999 under the Romanian Society of Control Engineering and Technical Informatics coordination, in its quality of IFAC Romanian National Member Organization and it appears quarterly. Each issue has up to 12 papers from various areas such as control theory, computer engineering, and applied informatics. Basic topics included in our Journal since 1999 have been time-invariant control systems, including robustness, stability, time delay aspects; advanced control strategies, including adaptive, predictive, nonlinear, intelligent, multi-model techniques; intelligent control techniques such as fuzzy, neural, genetic algorithms, and expert systems; and discrete event and hybrid systems, networks and embedded systems. Application areas covered have been environmental engineering, power systems, biomedical engineering, industrial and mobile robotics, and manufacturing.
期刊最新文献
Improving Position-Time Trajectory Accuracy in Vehicle Stop-and-Go Scenarios by Using a Mobile Robot as a Testbed Sensorless Induction Motor Drive Using Modified Integral Sliding Mode Control-Based MRAS Design and Patient-Oriented Control of A Rehabilitation Assistance Upper Exoskeleton Development of angular correction algorithm for movement of agricultural mobile robots in a straight line A Precise and Adaptive Graph Regularized Low Rank Representation Model for Recognizing Oil-bearing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1