疫情模型的数学分析评估封锁对COVID-19的影响

Partha Karmakar, Krishna Pada Das, Satyajit Saha, Bhagabat Das, Rakesh Kumar
{"title":"疫情模型的数学分析评估封锁对COVID-19的影响","authors":"Partha Karmakar, Krishna Pada Das, Satyajit Saha, Bhagabat Das, Rakesh Kumar","doi":"10.59400/jam.v1i2.97","DOIUrl":null,"url":null,"abstract":"Covid-19 and its variants, have been a worst pandemic, the entire world has witnessed. Tens of millions of cases have been recorded in over 210 countries and territories as part of the ongoing global pandemic that is still going on today. In this paper, we propose a SEI mathematical model to investigate the impact of lockdown to the controlling and spreading of infectious disease COVID-19. The epidemic model incorporates constant recruitment, experiencing infectious force in the latent period and the infected period. The equilibrium states are computed. Under some conditions, results for local asymptotic stability and global stability of disease-free and endemic equilibrium are established by using the stability theory of ordinary differential equations. It is seen that when the basic reproduction number , the dynamical system is stable and diseases die out from the system and when , the disease persists in the dynamical system. When , trans critical bifurcation is appeared. The numerical simulations are carried out to validate the analytical results.","PeriodicalId":495855,"journal":{"name":"Journal of AppliedMath","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical analysis of epidemic model to assess the impact of lockdown on COVID-19\",\"authors\":\"Partha Karmakar, Krishna Pada Das, Satyajit Saha, Bhagabat Das, Rakesh Kumar\",\"doi\":\"10.59400/jam.v1i2.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covid-19 and its variants, have been a worst pandemic, the entire world has witnessed. Tens of millions of cases have been recorded in over 210 countries and territories as part of the ongoing global pandemic that is still going on today. In this paper, we propose a SEI mathematical model to investigate the impact of lockdown to the controlling and spreading of infectious disease COVID-19. The epidemic model incorporates constant recruitment, experiencing infectious force in the latent period and the infected period. The equilibrium states are computed. Under some conditions, results for local asymptotic stability and global stability of disease-free and endemic equilibrium are established by using the stability theory of ordinary differential equations. It is seen that when the basic reproduction number , the dynamical system is stable and diseases die out from the system and when , the disease persists in the dynamical system. When , trans critical bifurcation is appeared. The numerical simulations are carried out to validate the analytical results.\",\"PeriodicalId\":495855,\"journal\":{\"name\":\"Journal of AppliedMath\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of AppliedMath\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59400/jam.v1i2.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of AppliedMath","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59400/jam.v1i2.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Covid-19及其变种是全世界目睹的最严重的大流行。作为目前仍在持续的全球大流行的一部分,在210多个国家和地区记录了数千万例病例。本文提出了一个SEI数学模型来研究封锁对COVID-19传染病控制和传播的影响。流行病模型包含不断的招募,在潜伏期和感染期经历传染力。计算了平衡态。在一定条件下,利用常微分方程的稳定性理论,得到了无病平衡点和地方病平衡点的局部渐近稳定性和全局稳定性的结果。可以看出,当基本繁殖数达到一定时,动力系统稳定,疾病从系统中消失;当基本繁殖数达到一定时,疾病在动力系统中持续存在。此时,出现跨临界分岔。通过数值模拟验证了分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mathematical analysis of epidemic model to assess the impact of lockdown on COVID-19
Covid-19 and its variants, have been a worst pandemic, the entire world has witnessed. Tens of millions of cases have been recorded in over 210 countries and territories as part of the ongoing global pandemic that is still going on today. In this paper, we propose a SEI mathematical model to investigate the impact of lockdown to the controlling and spreading of infectious disease COVID-19. The epidemic model incorporates constant recruitment, experiencing infectious force in the latent period and the infected period. The equilibrium states are computed. Under some conditions, results for local asymptotic stability and global stability of disease-free and endemic equilibrium are established by using the stability theory of ordinary differential equations. It is seen that when the basic reproduction number , the dynamical system is stable and diseases die out from the system and when , the disease persists in the dynamical system. When , trans critical bifurcation is appeared. The numerical simulations are carried out to validate the analytical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological analysis of multiple tables Topological analysis of multiple tables Hindustani classical music revisited statistically: Does the order of Markov chain in the note dependence depend on the raga or the composition? Enhancing handwritten numeric string recognition through incremental support vector machines A logical approach to validate the Goldbach conjecture: Paper 1/3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1