Honglei Wei, Xiangzhi Kong, Xianyi Zhai, Qiang Tong, Guibing Pang
{"title":"基于相关滤波器的水下海参视觉跟踪","authors":"Honglei Wei, Xiangzhi Kong, Xianyi Zhai, Qiang Tong, Guibing Pang","doi":"10.25165/j.ijabe.20231603.4503","DOIUrl":null,"url":null,"abstract":"One of the essential techniques for using underwater robots to fish sea cucumbers is that the robots must track sea cucumbers using computer vision technology. Tracking underwater targets is a challenging task due to suspension, water absorption, and light scattering. This study proposed a simple but effective algorithm for sea cucumber tracking based on Kernelized Correlation Filters (KCF) framework. This method tracked the head and tail of the sea cucumber respectively and calculated the scale change according to the distance between the head and tail. The KCF method was improved on three strategies. First of all, the target was searched at the predicted position to improve accuracy. Secondly, an adaptive learning rate updating method based on the detection score of each frame was proposed. Finally, the adaptive size of the histogram of the oriented gradient (HOG) feature was used to balance the accuracy and efficiency. Experimental results showed that the algorithm had good tracking performance. Keywords: visual tracking, correlation filters, kernelized correlation filters, sea cucumber, scale estimation, underwater DOI: 10.25165/j.ijabe.20231603.4503 Citation: Wei H L, Kong X Z, Zhai X Y, Tong Q, Pang G B. Visual tracking for underwater sea cucumber via correlation filters. Int J Agric & Biol Eng, 2023; 16(3): 16(3): 247–253.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual tracking for underwater sea cucumber via correlation filters\",\"authors\":\"Honglei Wei, Xiangzhi Kong, Xianyi Zhai, Qiang Tong, Guibing Pang\",\"doi\":\"10.25165/j.ijabe.20231603.4503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the essential techniques for using underwater robots to fish sea cucumbers is that the robots must track sea cucumbers using computer vision technology. Tracking underwater targets is a challenging task due to suspension, water absorption, and light scattering. This study proposed a simple but effective algorithm for sea cucumber tracking based on Kernelized Correlation Filters (KCF) framework. This method tracked the head and tail of the sea cucumber respectively and calculated the scale change according to the distance between the head and tail. The KCF method was improved on three strategies. First of all, the target was searched at the predicted position to improve accuracy. Secondly, an adaptive learning rate updating method based on the detection score of each frame was proposed. Finally, the adaptive size of the histogram of the oriented gradient (HOG) feature was used to balance the accuracy and efficiency. Experimental results showed that the algorithm had good tracking performance. Keywords: visual tracking, correlation filters, kernelized correlation filters, sea cucumber, scale estimation, underwater DOI: 10.25165/j.ijabe.20231603.4503 Citation: Wei H L, Kong X Z, Zhai X Y, Tong Q, Pang G B. Visual tracking for underwater sea cucumber via correlation filters. Int J Agric & Biol Eng, 2023; 16(3): 16(3): 247–253.\",\"PeriodicalId\":13895,\"journal\":{\"name\":\"International Journal of Agricultural and Biological Engineering\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural and Biological Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25165/j.ijabe.20231603.4503\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25165/j.ijabe.20231603.4503","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Visual tracking for underwater sea cucumber via correlation filters
One of the essential techniques for using underwater robots to fish sea cucumbers is that the robots must track sea cucumbers using computer vision technology. Tracking underwater targets is a challenging task due to suspension, water absorption, and light scattering. This study proposed a simple but effective algorithm for sea cucumber tracking based on Kernelized Correlation Filters (KCF) framework. This method tracked the head and tail of the sea cucumber respectively and calculated the scale change according to the distance between the head and tail. The KCF method was improved on three strategies. First of all, the target was searched at the predicted position to improve accuracy. Secondly, an adaptive learning rate updating method based on the detection score of each frame was proposed. Finally, the adaptive size of the histogram of the oriented gradient (HOG) feature was used to balance the accuracy and efficiency. Experimental results showed that the algorithm had good tracking performance. Keywords: visual tracking, correlation filters, kernelized correlation filters, sea cucumber, scale estimation, underwater DOI: 10.25165/j.ijabe.20231603.4503 Citation: Wei H L, Kong X Z, Zhai X Y, Tong Q, Pang G B. Visual tracking for underwater sea cucumber via correlation filters. Int J Agric & Biol Eng, 2023; 16(3): 16(3): 247–253.
期刊介绍:
International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.