{"title":"温度梯度对液态Si-Ti-C析出的影响","authors":"Tan Ha Minh, Khanh Pham Mai","doi":"10.52923/vmfs.jstm.62023.108.01","DOIUrl":null,"url":null,"abstract":"The mechanical properties of alloys and castings strongly depend on the formation of their microstructure. Heat treatment conditions have a directly effect on the grain size. Typically, smaller grain sizes result in improved mechanical properties. To achieve small grain sizes, a commonly applied method is rapid cooling, known as quenching. During the cooling process, there is always a temperature gradient within the casting, which can affect the formation of the microstructure. This study investigates the influence of temperature gradient on the size and morphology of the grains. The results show that at lower temperature gradients, the formed microstructure has a spherical shape. Increasing the temperature gradient leads to greater grain deformation.","PeriodicalId":485321,"journal":{"name":"Tạp chí Khoa học Công nghệ Kim loại","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of temperature gradient on precipitation in liquid Si-Ti-C\",\"authors\":\"Tan Ha Minh, Khanh Pham Mai\",\"doi\":\"10.52923/vmfs.jstm.62023.108.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanical properties of alloys and castings strongly depend on the formation of their microstructure. Heat treatment conditions have a directly effect on the grain size. Typically, smaller grain sizes result in improved mechanical properties. To achieve small grain sizes, a commonly applied method is rapid cooling, known as quenching. During the cooling process, there is always a temperature gradient within the casting, which can affect the formation of the microstructure. This study investigates the influence of temperature gradient on the size and morphology of the grains. The results show that at lower temperature gradients, the formed microstructure has a spherical shape. Increasing the temperature gradient leads to greater grain deformation.\",\"PeriodicalId\":485321,\"journal\":{\"name\":\"Tạp chí Khoa học Công nghệ Kim loại\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tạp chí Khoa học Công nghệ Kim loại\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52923/vmfs.jstm.62023.108.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tạp chí Khoa học Công nghệ Kim loại","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52923/vmfs.jstm.62023.108.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of temperature gradient on precipitation in liquid Si-Ti-C
The mechanical properties of alloys and castings strongly depend on the formation of their microstructure. Heat treatment conditions have a directly effect on the grain size. Typically, smaller grain sizes result in improved mechanical properties. To achieve small grain sizes, a commonly applied method is rapid cooling, known as quenching. During the cooling process, there is always a temperature gradient within the casting, which can affect the formation of the microstructure. This study investigates the influence of temperature gradient on the size and morphology of the grains. The results show that at lower temperature gradients, the formed microstructure has a spherical shape. Increasing the temperature gradient leads to greater grain deformation.