Jixiang Niu, Han Li, Zhenxiong Liu, Wei Liu, Hejun Xu
{"title":"基于Hilbert-Huang变换和基于注意力的时空耦合网络的机器人地面媒介分类","authors":"Jixiang Niu, Han Li, Zhenxiong Liu, Wei Liu, Hejun Xu","doi":"10.1049/2023/4721508","DOIUrl":null,"url":null,"abstract":"With the development of technology, mobile robots are increasingly deployed in real-world environments. To enable robots to work safely in a variety of terrain environments, we proposed a ground-type detection method based on the Hilbert–Huang transform (HHT) and attention-based spatiotemporal coupled network. Taking a dataset containing multiple sets of robot signals from a Kaggle competition as an example; we use the proposed method to classify the signals and thus achieve a terrain classification of the robot’s location. Firstly, the signal data were processed using the discrete wavelet transform for noise reduction, and all channels in the dataset were ranked by importance using the permutation importance method. Next, the instantaneous frequencies of the two most important channels were extracted using the HHT and added to the original dataset to expand the feature dimension. Then the features in the expanded dataset were extracted by the convolutional neural network, long short-term memory, and attention module. Afterward, the fully extracted features were passed into the fully connected layer for classification, and an average classification accuracy of 83.14% was obtained. The effectiveness of each part in our method was demonstrated using ablation experiments. Finally, we compared our method with some common methods in the field and found that our method obtained the highest classification accuracy, proving the superiority of the proposed method.","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"35 4","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robot Ground Media Classification Based on Hilbert–Huang Transform and Attention-Based Spatiotemporal Coupled Network\",\"authors\":\"Jixiang Niu, Han Li, Zhenxiong Liu, Wei Liu, Hejun Xu\",\"doi\":\"10.1049/2023/4721508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of technology, mobile robots are increasingly deployed in real-world environments. To enable robots to work safely in a variety of terrain environments, we proposed a ground-type detection method based on the Hilbert–Huang transform (HHT) and attention-based spatiotemporal coupled network. Taking a dataset containing multiple sets of robot signals from a Kaggle competition as an example; we use the proposed method to classify the signals and thus achieve a terrain classification of the robot’s location. Firstly, the signal data were processed using the discrete wavelet transform for noise reduction, and all channels in the dataset were ranked by importance using the permutation importance method. Next, the instantaneous frequencies of the two most important channels were extracted using the HHT and added to the original dataset to expand the feature dimension. Then the features in the expanded dataset were extracted by the convolutional neural network, long short-term memory, and attention module. Afterward, the fully extracted features were passed into the fully connected layer for classification, and an average classification accuracy of 83.14% was obtained. The effectiveness of each part in our method was demonstrated using ablation experiments. Finally, we compared our method with some common methods in the field and found that our method obtained the highest classification accuracy, proving the superiority of the proposed method.\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"35 4\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/4721508\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/4721508","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robot Ground Media Classification Based on Hilbert–Huang Transform and Attention-Based Spatiotemporal Coupled Network
With the development of technology, mobile robots are increasingly deployed in real-world environments. To enable robots to work safely in a variety of terrain environments, we proposed a ground-type detection method based on the Hilbert–Huang transform (HHT) and attention-based spatiotemporal coupled network. Taking a dataset containing multiple sets of robot signals from a Kaggle competition as an example; we use the proposed method to classify the signals and thus achieve a terrain classification of the robot’s location. Firstly, the signal data were processed using the discrete wavelet transform for noise reduction, and all channels in the dataset were ranked by importance using the permutation importance method. Next, the instantaneous frequencies of the two most important channels were extracted using the HHT and added to the original dataset to expand the feature dimension. Then the features in the expanded dataset were extracted by the convolutional neural network, long short-term memory, and attention module. Afterward, the fully extracted features were passed into the fully connected layer for classification, and an average classification accuracy of 83.14% was obtained. The effectiveness of each part in our method was demonstrated using ablation experiments. Finally, we compared our method with some common methods in the field and found that our method obtained the highest classification accuracy, proving the superiority of the proposed method.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf