Katarzyna Antosz, Małgorzata Jasiulewicz - Kaczmarek, Jose Machado, Marcin Relich
{"title":"应用主成分分析和逻辑回归来支持六西格玛在维修中的实施","authors":"Katarzyna Antosz, Małgorzata Jasiulewicz - Kaczmarek, Jose Machado, Marcin Relich","doi":"10.17531/ein/174603","DOIUrl":null,"url":null,"abstract":"Improving the efficiency of maintenance processes is one of the goals of companies. Improvement activities in this area require not only an appropriate maintenance strategy but also the use of a new approach to increase the efficiency of the process. This article focuses on using Six Sigma (SS) to improve maintenance processes. As an introduction, the generations of SS development are identified, and traditional and advanced analytical tools that can be useful in SS projects are reviewed. As part of the research, an example of the implementation of the SS project in the maintenance process using the DMAIC and selected advanced analytical methods, such as PCA and logistic regression, was presented. The PCA results showed that it was enough to have seven main components to keep about 84% of the information on variability. In developed logistic regression explained the impact of the individual factors affecting the availability of the machines. The identified factors and their interactions made it possible to define maintenance activities requiring improvements.","PeriodicalId":50549,"journal":{"name":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","volume":"43 6-7","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Principle Component Analysis and logistic regression to support Six Sigma implementation in maintenance\",\"authors\":\"Katarzyna Antosz, Małgorzata Jasiulewicz - Kaczmarek, Jose Machado, Marcin Relich\",\"doi\":\"10.17531/ein/174603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Improving the efficiency of maintenance processes is one of the goals of companies. Improvement activities in this area require not only an appropriate maintenance strategy but also the use of a new approach to increase the efficiency of the process. This article focuses on using Six Sigma (SS) to improve maintenance processes. As an introduction, the generations of SS development are identified, and traditional and advanced analytical tools that can be useful in SS projects are reviewed. As part of the research, an example of the implementation of the SS project in the maintenance process using the DMAIC and selected advanced analytical methods, such as PCA and logistic regression, was presented. The PCA results showed that it was enough to have seven main components to keep about 84% of the information on variability. In developed logistic regression explained the impact of the individual factors affecting the availability of the machines. The identified factors and their interactions made it possible to define maintenance activities requiring improvements.\",\"PeriodicalId\":50549,\"journal\":{\"name\":\"Eksploatacja I Niezawodnosc-Maintenance and Reliability\",\"volume\":\"43 6-7\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja I Niezawodnosc-Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/174603\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja I Niezawodnosc-Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/174603","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of Principle Component Analysis and logistic regression to support Six Sigma implementation in maintenance
Improving the efficiency of maintenance processes is one of the goals of companies. Improvement activities in this area require not only an appropriate maintenance strategy but also the use of a new approach to increase the efficiency of the process. This article focuses on using Six Sigma (SS) to improve maintenance processes. As an introduction, the generations of SS development are identified, and traditional and advanced analytical tools that can be useful in SS projects are reviewed. As part of the research, an example of the implementation of the SS project in the maintenance process using the DMAIC and selected advanced analytical methods, such as PCA and logistic regression, was presented. The PCA results showed that it was enough to have seven main components to keep about 84% of the information on variability. In developed logistic regression explained the impact of the individual factors affecting the availability of the machines. The identified factors and their interactions made it possible to define maintenance activities requiring improvements.
期刊介绍:
The quarterly Eksploatacja i Niezawodność – Maintenance and Reliability publishes articles containing original results of experimental research on the durabilty and reliability of technical objects. We also accept papers presenting theoretical analyses supported by physical interpretation of causes or ones that have been verified empirically. Eksploatacja i Niezawodność – Maintenance and Reliability also publishes articles on innovative modeling approaches and research methods regarding the durability and reliability of objects.