{"title":"群对群对抗性游戏的协调团队策略","authors":"Laura G. Strickland, Matthew C. Gombolay","doi":"10.2514/1.i011226","DOIUrl":null,"url":null,"abstract":"Although swarms of unmanned aerial vehicles have received much attention in the last few years, adversarial swarms (that is, competitive swarm-versus-swarm games) have been less well studied. In this paper, we demonstrate a deep reinforcement learning method to train a policy of fixed-wing aircraft agents to leverage hand-scripted tactics to exploit force concentration advantage and within-team coordination opportunities to destroy, or destroy, as many opponent team members as possible while preventing teammates from being attrited. The efficacy of agents using the policy network trained using the proposed method outperform teams utilizing only one of the handcrafted baseline tactics in [Formula: see text]-vs-[Formula: see text] engagements for [Formula: see text] as small as two and as large as 64 as well as learner teams trained to vary their yaw rate actions, even when the trained team’s agents’ sensor range and teammate partnership possibility is constrained.","PeriodicalId":50260,"journal":{"name":"Journal of Aerospace Information Systems","volume":"112 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinating Team Tactics for Swarm-Versus-Swarm Adversarial Games\",\"authors\":\"Laura G. Strickland, Matthew C. Gombolay\",\"doi\":\"10.2514/1.i011226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although swarms of unmanned aerial vehicles have received much attention in the last few years, adversarial swarms (that is, competitive swarm-versus-swarm games) have been less well studied. In this paper, we demonstrate a deep reinforcement learning method to train a policy of fixed-wing aircraft agents to leverage hand-scripted tactics to exploit force concentration advantage and within-team coordination opportunities to destroy, or destroy, as many opponent team members as possible while preventing teammates from being attrited. The efficacy of agents using the policy network trained using the proposed method outperform teams utilizing only one of the handcrafted baseline tactics in [Formula: see text]-vs-[Formula: see text] engagements for [Formula: see text] as small as two and as large as 64 as well as learner teams trained to vary their yaw rate actions, even when the trained team’s agents’ sensor range and teammate partnership possibility is constrained.\",\"PeriodicalId\":50260,\"journal\":{\"name\":\"Journal of Aerospace Information Systems\",\"volume\":\"112 6\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerospace Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2514/1.i011226\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerospace Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/1.i011226","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Coordinating Team Tactics for Swarm-Versus-Swarm Adversarial Games
Although swarms of unmanned aerial vehicles have received much attention in the last few years, adversarial swarms (that is, competitive swarm-versus-swarm games) have been less well studied. In this paper, we demonstrate a deep reinforcement learning method to train a policy of fixed-wing aircraft agents to leverage hand-scripted tactics to exploit force concentration advantage and within-team coordination opportunities to destroy, or destroy, as many opponent team members as possible while preventing teammates from being attrited. The efficacy of agents using the policy network trained using the proposed method outperform teams utilizing only one of the handcrafted baseline tactics in [Formula: see text]-vs-[Formula: see text] engagements for [Formula: see text] as small as two and as large as 64 as well as learner teams trained to vary their yaw rate actions, even when the trained team’s agents’ sensor range and teammate partnership possibility is constrained.
期刊介绍:
This Journal is devoted to the dissemination of original archival research papers describing new theoretical developments, novel applications, and case studies regarding advances in aerospace computing, information, and networks and communication systems that address aerospace-specific issues. Issues related to signal processing, electromagnetics, antenna theory, and the basic networking hardware transmission technologies of a network are not within the scope of this journal. Topics include aerospace systems and software engineering; verification and validation of embedded systems; the field known as ‘big data,’ data analytics, machine learning, and knowledge management for aerospace systems; human-automation interaction and systems health management for aerospace systems. Applications of autonomous systems, systems engineering principles, and safety and mission assurance are of particular interest. The Journal also features Technical Notes that discuss particular technical innovations or applications in the topics described above. Papers are also sought that rigorously review the results of recent research developments. In addition to original research papers and reviews, the journal publishes articles that review books, conferences, social media, and new educational modes applicable to the scope of the Journal.