R. Manimegalai, S. Sendhilnathan, V. Chithambaram, M. Kumar
{"title":"镉掺杂Co-Zn铁氧体铁磁流体特性的实验研究","authors":"R. Manimegalai, S. Sendhilnathan, V. Chithambaram, M. Kumar","doi":"10.15251/djnb.2023.182.547","DOIUrl":null,"url":null,"abstract":"The Co-Zn ferrites 𝐶𝐶𝐶𝐶0.5𝑍𝑍𝑍𝑍0.5𝐶𝐶𝐶𝐶𝑥𝑥𝐹𝐹𝐹𝐹(2−𝑥𝑥)𝑂𝑂4 (x-0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by CO-precipitation method. The dielectric and structural properties has been investigated by effect of Cd doping in Co-Zn spinel ferrites. Dielectric constants were studied dependence of the frequency and temperature thus revealed that the dielectric dispersion based on the MaxwellWagner method polarizations are agreed with Koop’s conceptualization theory. Further, dielectric properties were studies over a frequency range from 10 kHZ to 30 MHZ. The dielectric constant is varied from 2.4 to 8.4 for real parts and 0.008 to 0.42 for imaginary parts, respectively. The tangent loss also recorded as 0.003 to 0.052 at 1 MHZ due to Co ions concentrations. In high and low frequencies of grain and grain boundary contribution is an important evident for obtained dielectric constant. The obtained values of coercivity (Hc) for these ferrites range between 280.4 Oe to 1380.3 Oe, based on VSM data. By converting Zn2+ and Cd2+ to cobalt magnetic ions it is possible to convert the magnetic properties of cobalt ferrite into a potential individual for numerous technical uses. The dielectric loss at room temperature and at high frequencies is found to be quite negligible. It is also discovered that when Cd is substituted, the dielectric loss tangent reduces.","PeriodicalId":11233,"journal":{"name":"Digest Journal of Nanomaterials and Biostructures","volume":"37 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on ferrofluid properties of Cd doped Co-Zn ferrites\",\"authors\":\"R. Manimegalai, S. Sendhilnathan, V. Chithambaram, M. Kumar\",\"doi\":\"10.15251/djnb.2023.182.547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Co-Zn ferrites 𝐶𝐶𝐶𝐶0.5𝑍𝑍𝑍𝑍0.5𝐶𝐶𝐶𝐶𝑥𝑥𝐹𝐹𝐹𝐹(2−𝑥𝑥)𝑂𝑂4 (x-0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by CO-precipitation method. The dielectric and structural properties has been investigated by effect of Cd doping in Co-Zn spinel ferrites. Dielectric constants were studied dependence of the frequency and temperature thus revealed that the dielectric dispersion based on the MaxwellWagner method polarizations are agreed with Koop’s conceptualization theory. Further, dielectric properties were studies over a frequency range from 10 kHZ to 30 MHZ. The dielectric constant is varied from 2.4 to 8.4 for real parts and 0.008 to 0.42 for imaginary parts, respectively. The tangent loss also recorded as 0.003 to 0.052 at 1 MHZ due to Co ions concentrations. In high and low frequencies of grain and grain boundary contribution is an important evident for obtained dielectric constant. The obtained values of coercivity (Hc) for these ferrites range between 280.4 Oe to 1380.3 Oe, based on VSM data. By converting Zn2+ and Cd2+ to cobalt magnetic ions it is possible to convert the magnetic properties of cobalt ferrite into a potential individual for numerous technical uses. The dielectric loss at room temperature and at high frequencies is found to be quite negligible. It is also discovered that when Cd is substituted, the dielectric loss tangent reduces.\",\"PeriodicalId\":11233,\"journal\":{\"name\":\"Digest Journal of Nanomaterials and Biostructures\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digest Journal of Nanomaterials and Biostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15251/djnb.2023.182.547\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digest Journal of Nanomaterials and Biostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15251/djnb.2023.182.547","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental investigation on ferrofluid properties of Cd doped Co-Zn ferrites
The Co-Zn ferrites 𝐶𝐶𝐶𝐶0.5𝑍𝑍𝑍𝑍0.5𝐶𝐶𝐶𝐶𝑥𝑥𝐹𝐹𝐹𝐹(2−𝑥𝑥)𝑂𝑂4 (x-0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) were synthesized by CO-precipitation method. The dielectric and structural properties has been investigated by effect of Cd doping in Co-Zn spinel ferrites. Dielectric constants were studied dependence of the frequency and temperature thus revealed that the dielectric dispersion based on the MaxwellWagner method polarizations are agreed with Koop’s conceptualization theory. Further, dielectric properties were studies over a frequency range from 10 kHZ to 30 MHZ. The dielectric constant is varied from 2.4 to 8.4 for real parts and 0.008 to 0.42 for imaginary parts, respectively. The tangent loss also recorded as 0.003 to 0.052 at 1 MHZ due to Co ions concentrations. In high and low frequencies of grain and grain boundary contribution is an important evident for obtained dielectric constant. The obtained values of coercivity (Hc) for these ferrites range between 280.4 Oe to 1380.3 Oe, based on VSM data. By converting Zn2+ and Cd2+ to cobalt magnetic ions it is possible to convert the magnetic properties of cobalt ferrite into a potential individual for numerous technical uses. The dielectric loss at room temperature and at high frequencies is found to be quite negligible. It is also discovered that when Cd is substituted, the dielectric loss tangent reduces.