Mahnoush Maleki, Genevieve Pelletier, Manuel Rodriguez
{"title":"确定关键管道属性和位置,以最好地确定配水系统中的氯衰变系数","authors":"Mahnoush Maleki, Genevieve Pelletier, Manuel Rodriguez","doi":"10.2166/ws.2023.251","DOIUrl":null,"url":null,"abstract":"Abstract Water distribution system (WDS) characteristics can impact drinking water quality. Kinetic reaction coefficients of residual disinfectant associated with bulk water (kb) and pipe wall (kw) during water distribution can lead to water quality degradation. Determining these coefficients can be expensive and time-consuming. The main objective of this study is to determine the most relevant pipe characteristics and locations to best determine chlorine decay coefficients in a WDS. This article aims to evaluate various scenarios of kb and kw values and compare them to measured data in a full-scale WDS. The most accurate scenario is also compared with the lowest-cost scenario to identify the most effective information needed to determine these coefficients, in terms of location within the WDS and pipe characteristics (age, diameter, and material). Results showed that the scenario with the highest kw and kb values corresponds best to the field-measured data. Moreover, determining specific kinetic coefficients was shown to be more accurate for gray cast iron pipes, pipes installed in a period before 1960, and vulnerable zones for residual chlorine decay.","PeriodicalId":23573,"journal":{"name":"Water Science & Technology: Water Supply","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying key pipe attributes and locations to best determine chlorine decay coefficients within a water distribution system\",\"authors\":\"Mahnoush Maleki, Genevieve Pelletier, Manuel Rodriguez\",\"doi\":\"10.2166/ws.2023.251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Water distribution system (WDS) characteristics can impact drinking water quality. Kinetic reaction coefficients of residual disinfectant associated with bulk water (kb) and pipe wall (kw) during water distribution can lead to water quality degradation. Determining these coefficients can be expensive and time-consuming. The main objective of this study is to determine the most relevant pipe characteristics and locations to best determine chlorine decay coefficients in a WDS. This article aims to evaluate various scenarios of kb and kw values and compare them to measured data in a full-scale WDS. The most accurate scenario is also compared with the lowest-cost scenario to identify the most effective information needed to determine these coefficients, in terms of location within the WDS and pipe characteristics (age, diameter, and material). Results showed that the scenario with the highest kw and kb values corresponds best to the field-measured data. Moreover, determining specific kinetic coefficients was shown to be more accurate for gray cast iron pipes, pipes installed in a period before 1960, and vulnerable zones for residual chlorine decay.\",\"PeriodicalId\":23573,\"journal\":{\"name\":\"Water Science & Technology: Water Supply\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science & Technology: Water Supply\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/ws.2023.251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology: Water Supply","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying key pipe attributes and locations to best determine chlorine decay coefficients within a water distribution system
Abstract Water distribution system (WDS) characteristics can impact drinking water quality. Kinetic reaction coefficients of residual disinfectant associated with bulk water (kb) and pipe wall (kw) during water distribution can lead to water quality degradation. Determining these coefficients can be expensive and time-consuming. The main objective of this study is to determine the most relevant pipe characteristics and locations to best determine chlorine decay coefficients in a WDS. This article aims to evaluate various scenarios of kb and kw values and compare them to measured data in a full-scale WDS. The most accurate scenario is also compared with the lowest-cost scenario to identify the most effective information needed to determine these coefficients, in terms of location within the WDS and pipe characteristics (age, diameter, and material). Results showed that the scenario with the highest kw and kb values corresponds best to the field-measured data. Moreover, determining specific kinetic coefficients was shown to be more accurate for gray cast iron pipes, pipes installed in a period before 1960, and vulnerable zones for residual chlorine decay.