发现由钴配合物的配体光解引发的发散性、光控催化

IF 2.2 4区 化学 Q2 CHEMISTRY, ORGANIC Synthesis-Stuttgart Pub Date : 2023-09-28 DOI:10.1055/a-2183-4332
Nikita Vystavkin, Manuel Barday, Christopher Teskey
{"title":"发现由钴配合物的配体光解引发的发散性、光控催化","authors":"Nikita Vystavkin, Manuel Barday, Christopher Teskey","doi":"10.1055/a-2183-4332","DOIUrl":null,"url":null,"abstract":"Abstract Photochemistry has become a key area of research in synthetic chemistry over the last few decades. More recently, interest has grown in merging this area with transition metal catalysis to develop new reactivity. One key photoinduced step in this context is ligand dissociation from transition metal complexes. This has been used to develop light-gated catalysis, allowing for on/off control over a reaction. However, this concept can only result in a single product outcome. Our group has focused on the development of cobalt-catalyzed reactivity switches, enabled by a simple photodissociation step, which promotes one mechanistic path or another. As such, we can use a single catalytic platform to yield two different outcomes depending on whether the reaction is irradiated with light or not. This short review will focus on works in this area by our group and others. 1 Introduction 2 Photocontrolled Hydroboration 3 Hydrogenation and Hydroformylation 4 Conclusion","PeriodicalId":49451,"journal":{"name":"Synthesis-Stuttgart","volume":"29 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of divergent, light-controlled catalysis triggered by ligand photodissociation from cobalt complexes\",\"authors\":\"Nikita Vystavkin, Manuel Barday, Christopher Teskey\",\"doi\":\"10.1055/a-2183-4332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Photochemistry has become a key area of research in synthetic chemistry over the last few decades. More recently, interest has grown in merging this area with transition metal catalysis to develop new reactivity. One key photoinduced step in this context is ligand dissociation from transition metal complexes. This has been used to develop light-gated catalysis, allowing for on/off control over a reaction. However, this concept can only result in a single product outcome. Our group has focused on the development of cobalt-catalyzed reactivity switches, enabled by a simple photodissociation step, which promotes one mechanistic path or another. As such, we can use a single catalytic platform to yield two different outcomes depending on whether the reaction is irradiated with light or not. This short review will focus on works in this area by our group and others. 1 Introduction 2 Photocontrolled Hydroboration 3 Hydrogenation and Hydroformylation 4 Conclusion\",\"PeriodicalId\":49451,\"journal\":{\"name\":\"Synthesis-Stuttgart\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthesis-Stuttgart\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2183-4332\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthesis-Stuttgart","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2183-4332","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要在过去的几十年里,光化学已经成为合成化学研究的一个重要领域。最近,人们对将这一领域与过渡金属催化相结合以开发新的反应性越来越感兴趣。在这种情况下,一个关键的光诱导步骤是配体与过渡金属配合物的解离。这已被用于开发光门控催化,允许对反应进行开/关控制。然而,这个概念只能产生单一的产品结果。我们的团队专注于开发钴催化的反应性开关,通过简单的光解步骤实现,这促进了一种机制路径或另一种机制路径。因此,我们可以使用一个催化平台来产生两种不同的结果,这取决于反应是否被光照射。这篇简短的综述将重点介绍我们小组和其他人在这方面的工作。1介绍2光控硼氢化3氢化与氢甲酰化4结论
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of divergent, light-controlled catalysis triggered by ligand photodissociation from cobalt complexes
Abstract Photochemistry has become a key area of research in synthetic chemistry over the last few decades. More recently, interest has grown in merging this area with transition metal catalysis to develop new reactivity. One key photoinduced step in this context is ligand dissociation from transition metal complexes. This has been used to develop light-gated catalysis, allowing for on/off control over a reaction. However, this concept can only result in a single product outcome. Our group has focused on the development of cobalt-catalyzed reactivity switches, enabled by a simple photodissociation step, which promotes one mechanistic path or another. As such, we can use a single catalytic platform to yield two different outcomes depending on whether the reaction is irradiated with light or not. This short review will focus on works in this area by our group and others. 1 Introduction 2 Photocontrolled Hydroboration 3 Hydrogenation and Hydroformylation 4 Conclusion
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthesis-Stuttgart
Synthesis-Stuttgart 化学-有机化学
CiteScore
4.50
自引率
7.70%
发文量
435
审稿时长
1 months
期刊介绍: SYNTHESIS is an international full-paper journal devoted to the advancement of the science of chemical synthesis. It covers all fields of organic chemistry involving synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines. SYNTHESIS provides dependable research results with detailed and reliable experimental procedures and full characterization of all important new products as well as scientific primary data.
期刊最新文献
Concise Total Synthesis of Complanadine A Enabled by Pyrrole-to-Pyridine Molecular Editing. SYNFORM ISSUE 2023/12 Linked PDF of Table of Contents Regioselective Synthesis of 2,4- and 2,5-disubstituted 1,3-thiazoles from 2-oxo-2-(amino)ethanedithioates via Base Catalysed Cyclization Reactions of 5-(Trialkyl)silylpent-1-en-4-yn-3-ones with Hydrazines: Original Synthetic Routes to Luminescent Substances Containing Azole Motifs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1