{"title":"结构有效预应力无损检测与健康监测技术","authors":"Junfeng Jia, Longguan Zhang, Jinping Ou, Xize Chen","doi":"10.1155/2023/8940008","DOIUrl":null,"url":null,"abstract":"Prestressed structures are widely employed in bridges and large-span spatial structures, and the accurate evaluation of prestress state is of great importance for structural maintenance. This paper reviews the nondestructive testing (NDT) and health monitoring techniques for structural effective prestress. Specifically, the fiber Bragg grating (FBG) sensor-based, magnetic-elastic (ME) sensor-based, dynamic response-based, ultrasonic guided wave (UGW)-based, electromechanical impedance (EMI)-based, and electrical resistance-based methods are reviewed in this paper. Firstly, the principle, application range, and measuring accuracy of each technique are introduced and analyzed, and the benefits and limitations of each technique are summarized: The FBG sensor and ME sensor take on high measuring accuracy and have been applied in practical engineering, but they are required to be preinstalled during structural construction; the dynamic response-based method is greatly effective in cable force assessment but not suitable for prestress evaluation of prestressed concrete (PSC) structures; the UGW-based, EMI-based, and electrical resistance-based methods have shown favorable potential for prestress assessment in laboratory experiments, but their feasibility and accuracy in practical engineering need to be verified. Secondly, the challenges and discussion of each method are discussed in the following four aspects: measuring range, reliability of measuring results, stability and durability considering long-term monitoring, and cost-efficiency. Finally, a decision tree is proposed to choose the most appropriate prestress evaluation method in a specific application scenario.","PeriodicalId":48981,"journal":{"name":"Structural Control & Health Monitoring","volume":"25 1","pages":"0"},"PeriodicalIF":5.4000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondestructive Testing and Health Monitoring Techniques for Structural Effective Prestress\",\"authors\":\"Junfeng Jia, Longguan Zhang, Jinping Ou, Xize Chen\",\"doi\":\"10.1155/2023/8940008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prestressed structures are widely employed in bridges and large-span spatial structures, and the accurate evaluation of prestress state is of great importance for structural maintenance. This paper reviews the nondestructive testing (NDT) and health monitoring techniques for structural effective prestress. Specifically, the fiber Bragg grating (FBG) sensor-based, magnetic-elastic (ME) sensor-based, dynamic response-based, ultrasonic guided wave (UGW)-based, electromechanical impedance (EMI)-based, and electrical resistance-based methods are reviewed in this paper. Firstly, the principle, application range, and measuring accuracy of each technique are introduced and analyzed, and the benefits and limitations of each technique are summarized: The FBG sensor and ME sensor take on high measuring accuracy and have been applied in practical engineering, but they are required to be preinstalled during structural construction; the dynamic response-based method is greatly effective in cable force assessment but not suitable for prestress evaluation of prestressed concrete (PSC) structures; the UGW-based, EMI-based, and electrical resistance-based methods have shown favorable potential for prestress assessment in laboratory experiments, but their feasibility and accuracy in practical engineering need to be verified. Secondly, the challenges and discussion of each method are discussed in the following four aspects: measuring range, reliability of measuring results, stability and durability considering long-term monitoring, and cost-efficiency. Finally, a decision tree is proposed to choose the most appropriate prestress evaluation method in a specific application scenario.\",\"PeriodicalId\":48981,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8940008\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8940008","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nondestructive Testing and Health Monitoring Techniques for Structural Effective Prestress
Prestressed structures are widely employed in bridges and large-span spatial structures, and the accurate evaluation of prestress state is of great importance for structural maintenance. This paper reviews the nondestructive testing (NDT) and health monitoring techniques for structural effective prestress. Specifically, the fiber Bragg grating (FBG) sensor-based, magnetic-elastic (ME) sensor-based, dynamic response-based, ultrasonic guided wave (UGW)-based, electromechanical impedance (EMI)-based, and electrical resistance-based methods are reviewed in this paper. Firstly, the principle, application range, and measuring accuracy of each technique are introduced and analyzed, and the benefits and limitations of each technique are summarized: The FBG sensor and ME sensor take on high measuring accuracy and have been applied in practical engineering, but they are required to be preinstalled during structural construction; the dynamic response-based method is greatly effective in cable force assessment but not suitable for prestress evaluation of prestressed concrete (PSC) structures; the UGW-based, EMI-based, and electrical resistance-based methods have shown favorable potential for prestress assessment in laboratory experiments, but their feasibility and accuracy in practical engineering need to be verified. Secondly, the challenges and discussion of each method are discussed in the following four aspects: measuring range, reliability of measuring results, stability and durability considering long-term monitoring, and cost-efficiency. Finally, a decision tree is proposed to choose the most appropriate prestress evaluation method in a specific application scenario.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.