{"title":"基于智能窃听器的无线协同定位网络调度","authors":"Ming Liu, Mu Jia, Tingting Zhang","doi":"10.1155/2023/7533455","DOIUrl":null,"url":null,"abstract":"Location-based service based on wireless cooperative localization networks is becoming ubiquitous nowadays. However, since the fact that most location network nodes are resource-limited, recent investigations focus on the proper network scheduling strategies that can significantly enhance the system performance, including but not limited to localization accuracy and energy efficiency. In addition to the current efficient nondata-aided strategies, we find that some silent nodes, called “eavesdroppers,” can be helpful to the localization task without transmitting any signals. In this paper, we first formulate the eavesdropping scheduling policy in practical asynchronous cooperative wireless localization networks. Then, we perform resource optimization in different eavesdropping-based strategies. Both two-slot and multislot strategies are considered, and three types of listening modes are designed from a practical point of view. Numeric results show that, for the scenario with a blocked propagation path, the localization error of networks with dedicated eavesdroppers is only 21% of the conventional networks. Besides, the system with eavesdropping anchors could improve the localization performance by 70%. The result could provide meaningful insights into the practical low-complexity location network deployment and development.","PeriodicalId":49359,"journal":{"name":"Wireless Communications & Mobile Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scheduling in Wireless Cooperative Localization Networks with Intelligent Eavesdroppers\",\"authors\":\"Ming Liu, Mu Jia, Tingting Zhang\",\"doi\":\"10.1155/2023/7533455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Location-based service based on wireless cooperative localization networks is becoming ubiquitous nowadays. However, since the fact that most location network nodes are resource-limited, recent investigations focus on the proper network scheduling strategies that can significantly enhance the system performance, including but not limited to localization accuracy and energy efficiency. In addition to the current efficient nondata-aided strategies, we find that some silent nodes, called “eavesdroppers,” can be helpful to the localization task without transmitting any signals. In this paper, we first formulate the eavesdropping scheduling policy in practical asynchronous cooperative wireless localization networks. Then, we perform resource optimization in different eavesdropping-based strategies. Both two-slot and multislot strategies are considered, and three types of listening modes are designed from a practical point of view. Numeric results show that, for the scenario with a blocked propagation path, the localization error of networks with dedicated eavesdroppers is only 21% of the conventional networks. Besides, the system with eavesdropping anchors could improve the localization performance by 70%. The result could provide meaningful insights into the practical low-complexity location network deployment and development.\",\"PeriodicalId\":49359,\"journal\":{\"name\":\"Wireless Communications & Mobile Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wireless Communications & Mobile Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7533455\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wireless Communications & Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7533455","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Scheduling in Wireless Cooperative Localization Networks with Intelligent Eavesdroppers
Location-based service based on wireless cooperative localization networks is becoming ubiquitous nowadays. However, since the fact that most location network nodes are resource-limited, recent investigations focus on the proper network scheduling strategies that can significantly enhance the system performance, including but not limited to localization accuracy and energy efficiency. In addition to the current efficient nondata-aided strategies, we find that some silent nodes, called “eavesdroppers,” can be helpful to the localization task without transmitting any signals. In this paper, we first formulate the eavesdropping scheduling policy in practical asynchronous cooperative wireless localization networks. Then, we perform resource optimization in different eavesdropping-based strategies. Both two-slot and multislot strategies are considered, and three types of listening modes are designed from a practical point of view. Numeric results show that, for the scenario with a blocked propagation path, the localization error of networks with dedicated eavesdroppers is only 21% of the conventional networks. Besides, the system with eavesdropping anchors could improve the localization performance by 70%. The result could provide meaningful insights into the practical low-complexity location network deployment and development.
期刊介绍:
Presenting comprehensive coverage of this fast moving field, Wireless Communications and Mobile Computing provides the R&D communities working in academia and the telecommunications and networking industries with a forum for sharing research and ideas.
The convergence of wireless communications and mobile computing is bringing together two areas of immense growth and innovation. This is reflected throughout the journal by strongly focusing on new trends, developments, emerging technologies and new industrial standards.