None Siron Anita Susan T, None Nithya Balasubramanian
{"title":"无线可充电传感器网络中停车点选择的混合元启发式算法","authors":"None Siron Anita Susan T, None Nithya Balasubramanian","doi":"10.46604/ijeti.2023.11552","DOIUrl":null,"url":null,"abstract":"A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network lifetime, and trust factor.","PeriodicalId":43808,"journal":{"name":"International Journal of Engineering and Technology Innovation","volume":"48 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Metaheuristic Algorithm for Stop Point Selection in Wireless Rechargeable Sensor Network\",\"authors\":\"None Siron Anita Susan T, None Nithya Balasubramanian\",\"doi\":\"10.46604/ijeti.2023.11552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network lifetime, and trust factor.\",\"PeriodicalId\":43808,\"journal\":{\"name\":\"International Journal of Engineering and Technology Innovation\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering and Technology Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46604/ijeti.2023.11552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Technology Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46604/ijeti.2023.11552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Hybrid Metaheuristic Algorithm for Stop Point Selection in Wireless Rechargeable Sensor Network
A wireless rechargeable sensor network (WRSN) enables charging of rechargeable sensor nodes (RSN) wirelessly through a mobile charging vehicle (MCV). Most existing works choose the MCV’s stop point (SP) at random, the cluster’s center, or the cluster head position, all without exploring the demand from RSNs. It results in a long charging delay, a low charging throughput, frequent MCV trips, and more dead nodes. To overcome these issues, this paper proposes a hybrid metaheuristic algorithm for stop point selection (HMA-SPS) that combines the techniques of the dragonfly algorithm (DA), firefly algorithm (FA), and gray wolf optimization (GWO) algorithms. Using FA and GWO techniques, DA predicts an ideal SP using the run-time metrics of RSNs, such as energy, delay, distance, and trust factors. The simulated results demonstrate faster convergence with low delay and highlight that more RSNs can be recharged with fewer MCV visits, further enhancing energy utilization, throughput, network lifetime, and trust factor.
期刊介绍:
The IJETI journal focus on the field of engineering and technology Innovation. And it publishes original papers including but not limited to the following fields: Automation Engineering Civil Engineering Control Engineering Electric Engineering Electronic Engineering Green Technology Information Engineering Mechanical Engineering Material Engineering Mechatronics and Robotics Engineering Nanotechnology Optic Engineering Sport Science and Technology Innovation Management Other Engineering and Technology Related Topics.