Agnieszka Sorensen , Kshitij Agarwal , Kyle W. Brown , Zbigniew Chajęcki , Paweł Danielewicz , Christian Drischler , Stefano Gandolfi , Jeremy W. Holt , Matthias Kaminski , Che-Ming Ko , Rohit Kumar , Bao-An Li , William G. Lynch , Alan B. McIntosh , William G. Newton , Scott Pratt , Oleh Savchuk , Maria Stefaniak , Ingo Tews , ManYee Betty Tsang , Yi Yin
{"title":"重离子碰撞下的致密核物质状态方程","authors":"Agnieszka Sorensen , Kshitij Agarwal , Kyle W. Brown , Zbigniew Chajęcki , Paweł Danielewicz , Christian Drischler , Stefano Gandolfi , Jeremy W. Holt , Matthias Kaminski , Che-Ming Ko , Rohit Kumar , Bao-An Li , William G. Lynch , Alan B. McIntosh , William G. Newton , Scott Pratt , Oleh Savchuk , Maria Stefaniak , Ingo Tews , ManYee Betty Tsang , Yi Yin","doi":"10.1016/j.ppnp.2023.104080","DOIUrl":null,"url":null,"abstract":"<div><p><span>The nuclear equation of state<span><span> (EOS) is at the center of numerous theoretical and experimental efforts in nuclear physics. With advances in microscopic theories for nuclear interactions, the availability of experiments probing nuclear matter under conditions not reached before, endeavors to develop sophisticated and reliable transport simulations to interpret these experiments, and the advent of multi-messenger astronomy, the next decade will bring new opportunities for determining the nuclear matter EOS, elucidating its dependence on density, temperature, and isospin asymmetry. Among controlled terrestrial experiments, collisions of heavy nuclei at intermediate beam energies (from a few tens of MeV/nucleon to about 25 GeV/nucleon in the fixed-target frame) probe the widest ranges of </span>baryon density and temperature, enabling studies of nuclear matter from a few tenths to about 5 times the nuclear saturation density and for temperatures from a few to well above a hundred MeV, respectively. Collisions of neutron-rich isotopes further bring the opportunity to probe effects due to the isospin asymmetry. However, capitalizing on the enormous scientific effort aimed at uncovering the dense nuclear matter EOS, both at </span></span>RHIC<span> and at FRIB as well as at other international facilities, depends on the continued development of state-of-the-art hadronic transport simulations. This white paper highlights the essential role that heavy-ion collision experiments and hadronic transport simulations play in understanding strong interactions in dense nuclear matter, with an emphasis on how these efforts can be used together with microscopic approaches and neutron star studies to uncover the nuclear EOS.</span></p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"134 ","pages":"Article 104080"},"PeriodicalIF":14.5000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Dense nuclear matter equation of state from heavy-ion collisions\",\"authors\":\"Agnieszka Sorensen , Kshitij Agarwal , Kyle W. Brown , Zbigniew Chajęcki , Paweł Danielewicz , Christian Drischler , Stefano Gandolfi , Jeremy W. Holt , Matthias Kaminski , Che-Ming Ko , Rohit Kumar , Bao-An Li , William G. Lynch , Alan B. McIntosh , William G. Newton , Scott Pratt , Oleh Savchuk , Maria Stefaniak , Ingo Tews , ManYee Betty Tsang , Yi Yin\",\"doi\":\"10.1016/j.ppnp.2023.104080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The nuclear equation of state<span><span> (EOS) is at the center of numerous theoretical and experimental efforts in nuclear physics. With advances in microscopic theories for nuclear interactions, the availability of experiments probing nuclear matter under conditions not reached before, endeavors to develop sophisticated and reliable transport simulations to interpret these experiments, and the advent of multi-messenger astronomy, the next decade will bring new opportunities for determining the nuclear matter EOS, elucidating its dependence on density, temperature, and isospin asymmetry. Among controlled terrestrial experiments, collisions of heavy nuclei at intermediate beam energies (from a few tens of MeV/nucleon to about 25 GeV/nucleon in the fixed-target frame) probe the widest ranges of </span>baryon density and temperature, enabling studies of nuclear matter from a few tenths to about 5 times the nuclear saturation density and for temperatures from a few to well above a hundred MeV, respectively. Collisions of neutron-rich isotopes further bring the opportunity to probe effects due to the isospin asymmetry. However, capitalizing on the enormous scientific effort aimed at uncovering the dense nuclear matter EOS, both at </span></span>RHIC<span> and at FRIB as well as at other international facilities, depends on the continued development of state-of-the-art hadronic transport simulations. This white paper highlights the essential role that heavy-ion collision experiments and hadronic transport simulations play in understanding strong interactions in dense nuclear matter, with an emphasis on how these efforts can be used together with microscopic approaches and neutron star studies to uncover the nuclear EOS.</span></p></div>\",\"PeriodicalId\":412,\"journal\":{\"name\":\"Progress in Particle and Nuclear Physics\",\"volume\":\"134 \",\"pages\":\"Article 104080\"},\"PeriodicalIF\":14.5000,\"publicationDate\":\"2023-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Particle and Nuclear Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0146641023000613\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641023000613","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Dense nuclear matter equation of state from heavy-ion collisions
The nuclear equation of state (EOS) is at the center of numerous theoretical and experimental efforts in nuclear physics. With advances in microscopic theories for nuclear interactions, the availability of experiments probing nuclear matter under conditions not reached before, endeavors to develop sophisticated and reliable transport simulations to interpret these experiments, and the advent of multi-messenger astronomy, the next decade will bring new opportunities for determining the nuclear matter EOS, elucidating its dependence on density, temperature, and isospin asymmetry. Among controlled terrestrial experiments, collisions of heavy nuclei at intermediate beam energies (from a few tens of MeV/nucleon to about 25 GeV/nucleon in the fixed-target frame) probe the widest ranges of baryon density and temperature, enabling studies of nuclear matter from a few tenths to about 5 times the nuclear saturation density and for temperatures from a few to well above a hundred MeV, respectively. Collisions of neutron-rich isotopes further bring the opportunity to probe effects due to the isospin asymmetry. However, capitalizing on the enormous scientific effort aimed at uncovering the dense nuclear matter EOS, both at RHIC and at FRIB as well as at other international facilities, depends on the continued development of state-of-the-art hadronic transport simulations. This white paper highlights the essential role that heavy-ion collision experiments and hadronic transport simulations play in understanding strong interactions in dense nuclear matter, with an emphasis on how these efforts can be used together with microscopic approaches and neutron star studies to uncover the nuclear EOS.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.