{"title":"将连杆机构手绘草图转换为数字表示形式","authors":"Anar Nurizada, Anurag Purwar","doi":"10.1115/1.4064037","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents an approach based on deep neural networks for interactive digital transformation and simulation of n-bar planar linkages composed of revolute and prismatic joints from hand-drawn sketches. Rather than relying solely on computer vision, our approach leverages the topological knowledge of linkage mechanisms in combination with the output of a convolutional deep neural network. This creates a framework for recognition of hand-drawn sketches. Our methodology involves first generating a dataset of synthetic images of linkage mechanism sketches that resemble hand-drawn sketches. We then fine-tune a state-of-the-art deep neural network capable of detecting discrete objects using a set of building blocks of linkage mechanisms, specifically joints and links in various positions, scales, and orientations. We perform a topological analysis on the set of detected objects to create a kinematic model of the sketched mechanisms. Results indicate that our algorithm performs well on hand-drawn sketches, and it can aid in the conversion of such sketches into their digital representations. This has implications for effective communication, analysis, cataloging, and classification of planar mechanisms. Furthermore, our approach could lay the groundwork for image-based synthesis of planar mechanisms, which would be insensitive to their complexity or properties, such as the algebraic degree of the coupler curves.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"98 7","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Hand-drawn Sketches of Linkage Mechanisms into their Digital Representation\",\"authors\":\"Anar Nurizada, Anurag Purwar\",\"doi\":\"10.1115/1.4064037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents an approach based on deep neural networks for interactive digital transformation and simulation of n-bar planar linkages composed of revolute and prismatic joints from hand-drawn sketches. Rather than relying solely on computer vision, our approach leverages the topological knowledge of linkage mechanisms in combination with the output of a convolutional deep neural network. This creates a framework for recognition of hand-drawn sketches. Our methodology involves first generating a dataset of synthetic images of linkage mechanism sketches that resemble hand-drawn sketches. We then fine-tune a state-of-the-art deep neural network capable of detecting discrete objects using a set of building blocks of linkage mechanisms, specifically joints and links in various positions, scales, and orientations. We perform a topological analysis on the set of detected objects to create a kinematic model of the sketched mechanisms. Results indicate that our algorithm performs well on hand-drawn sketches, and it can aid in the conversion of such sketches into their digital representations. This has implications for effective communication, analysis, cataloging, and classification of planar mechanisms. Furthermore, our approach could lay the groundwork for image-based synthesis of planar mechanisms, which would be insensitive to their complexity or properties, such as the algebraic degree of the coupler curves.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"98 7\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064037\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064037","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Transforming Hand-drawn Sketches of Linkage Mechanisms into their Digital Representation
Abstract This paper presents an approach based on deep neural networks for interactive digital transformation and simulation of n-bar planar linkages composed of revolute and prismatic joints from hand-drawn sketches. Rather than relying solely on computer vision, our approach leverages the topological knowledge of linkage mechanisms in combination with the output of a convolutional deep neural network. This creates a framework for recognition of hand-drawn sketches. Our methodology involves first generating a dataset of synthetic images of linkage mechanism sketches that resemble hand-drawn sketches. We then fine-tune a state-of-the-art deep neural network capable of detecting discrete objects using a set of building blocks of linkage mechanisms, specifically joints and links in various positions, scales, and orientations. We perform a topological analysis on the set of detected objects to create a kinematic model of the sketched mechanisms. Results indicate that our algorithm performs well on hand-drawn sketches, and it can aid in the conversion of such sketches into their digital representations. This has implications for effective communication, analysis, cataloging, and classification of planar mechanisms. Furthermore, our approach could lay the groundwork for image-based synthesis of planar mechanisms, which would be insensitive to their complexity or properties, such as the algebraic degree of the coupler curves.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping