Laetitia Monnier, William Bernstein, Vincenzo Ferrero, Sebti Foufou
{"title":"一种用机床控制器数据分割数控数据的自动化方法","authors":"Laetitia Monnier, William Bernstein, Vincenzo Ferrero, Sebti Foufou","doi":"10.1115/1.4064036","DOIUrl":null,"url":null,"abstract":"Abstract Developing a more automated industrial digital thread is vital to realize the smart manufacturing and Industry 4.0 vision. The digital thread allows for efficient sharing across product lifecycle stages. Current techniques are not robust in relating downstream data, such as manufac- turing and inspection information, back to design for bet- ter decision making. In response, we previously presented a methodology that aligns numerical control (NC) code, a standard for representing machine tool instructions, to controller data represented in MTConnect, a standard that provides a vocabulary for generalizing execution logs from different machine tools and devices. This paper ex- tends our previous work by automating the tool identifi- cation using a k-means clustering algorithm to refine the alignment of the data. In doing so, we compare differ- ent distance techniques to analyze the spatial-temporal registration of the two datasets, i.e., the NC code and MTConnect data. Then, we assess the efficiency of our method through an error measurement technique that ex- presses the quality of the alignment. Finally, we apply our methodology to a case study that includes verified process plans and real execution data, derived from the Smart Manufacturing Systems Test Bed hosted at the National Institute of Standards and Technology. Our anal- ysis illustrates that dynamic time warping achieves the best point registration with the least errors compared with other alignment techniques.","PeriodicalId":54856,"journal":{"name":"Journal of Computing and Information Science in Engineering","volume":"98 2","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automated approach for segmenting numerical control data with controller data for machine tools\",\"authors\":\"Laetitia Monnier, William Bernstein, Vincenzo Ferrero, Sebti Foufou\",\"doi\":\"10.1115/1.4064036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Developing a more automated industrial digital thread is vital to realize the smart manufacturing and Industry 4.0 vision. The digital thread allows for efficient sharing across product lifecycle stages. Current techniques are not robust in relating downstream data, such as manufac- turing and inspection information, back to design for bet- ter decision making. In response, we previously presented a methodology that aligns numerical control (NC) code, a standard for representing machine tool instructions, to controller data represented in MTConnect, a standard that provides a vocabulary for generalizing execution logs from different machine tools and devices. This paper ex- tends our previous work by automating the tool identifi- cation using a k-means clustering algorithm to refine the alignment of the data. In doing so, we compare differ- ent distance techniques to analyze the spatial-temporal registration of the two datasets, i.e., the NC code and MTConnect data. Then, we assess the efficiency of our method through an error measurement technique that ex- presses the quality of the alignment. Finally, we apply our methodology to a case study that includes verified process plans and real execution data, derived from the Smart Manufacturing Systems Test Bed hosted at the National Institute of Standards and Technology. Our anal- ysis illustrates that dynamic time warping achieves the best point registration with the least errors compared with other alignment techniques.\",\"PeriodicalId\":54856,\"journal\":{\"name\":\"Journal of Computing and Information Science in Engineering\",\"volume\":\"98 2\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing and Information Science in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064036\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Science in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064036","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
An automated approach for segmenting numerical control data with controller data for machine tools
Abstract Developing a more automated industrial digital thread is vital to realize the smart manufacturing and Industry 4.0 vision. The digital thread allows for efficient sharing across product lifecycle stages. Current techniques are not robust in relating downstream data, such as manufac- turing and inspection information, back to design for bet- ter decision making. In response, we previously presented a methodology that aligns numerical control (NC) code, a standard for representing machine tool instructions, to controller data represented in MTConnect, a standard that provides a vocabulary for generalizing execution logs from different machine tools and devices. This paper ex- tends our previous work by automating the tool identifi- cation using a k-means clustering algorithm to refine the alignment of the data. In doing so, we compare differ- ent distance techniques to analyze the spatial-temporal registration of the two datasets, i.e., the NC code and MTConnect data. Then, we assess the efficiency of our method through an error measurement technique that ex- presses the quality of the alignment. Finally, we apply our methodology to a case study that includes verified process plans and real execution data, derived from the Smart Manufacturing Systems Test Bed hosted at the National Institute of Standards and Technology. Our anal- ysis illustrates that dynamic time warping achieves the best point registration with the least errors compared with other alignment techniques.
期刊介绍:
The ASME Journal of Computing and Information Science in Engineering (JCISE) publishes articles related to Algorithms, Computational Methods, Computing Infrastructure, Computer-Interpretable Representations, Human-Computer Interfaces, Information Science, and/or System Architectures that aim to improve some aspect of product and system lifecycle (e.g., design, manufacturing, operation, maintenance, disposal, recycling etc.). Applications considered in JCISE manuscripts should be relevant to the mechanical engineering discipline. Papers can be focused on fundamental research leading to new methods, or adaptation of existing methods for new applications.
Scope: Advanced Computing Infrastructure; Artificial Intelligence; Big Data and Analytics; Collaborative Design; Computer Aided Design; Computer Aided Engineering; Computer Aided Manufacturing; Computational Foundations for Additive Manufacturing; Computational Foundations for Engineering Optimization; Computational Geometry; Computational Metrology; Computational Synthesis; Conceptual Design; Cybermanufacturing; Cyber Physical Security for Factories; Cyber Physical System Design and Operation; Data-Driven Engineering Applications; Engineering Informatics; Geometric Reasoning; GPU Computing for Design and Manufacturing; Human Computer Interfaces/Interactions; Industrial Internet of Things; Knowledge Engineering; Information Management; Inverse Methods for Engineering Applications; Machine Learning for Engineering Applications; Manufacturing Planning; Manufacturing Automation; Model-based Systems Engineering; Multiphysics Modeling and Simulation; Multiscale Modeling and Simulation; Multidisciplinary Optimization; Physics-Based Simulations; Process Modeling for Engineering Applications; Qualification, Verification and Validation of Computational Models; Symbolic Computing for Engineering Applications; Tolerance Modeling; Topology and Shape Optimization; Virtual and Augmented Reality Environments; Virtual Prototyping