Fengkang Wang, Hang He, Wanlin Wang, Lei Zhang, Jiaxi Chen, Jiang Du, Jie Zeng
{"title":"结晶器冷却强度对连铸过程中凹型裂纹形成及助焊剂渗透的影响","authors":"Fengkang Wang, Hang He, Wanlin Wang, Lei Zhang, Jiaxi Chen, Jiang Du, Jie Zeng","doi":"10.1007/s11663-023-02911-4","DOIUrl":null,"url":null,"abstract":"As one of the most serious defects in the products of continuous casting steel, the surface depressions with longitudinal cracks originated from the mold were clearly characterized. A mold simulator technique was developed to investigate the effects of different mold cooling flow rates (3.5, 6.0, 7.5 L/min) on the evolution of depression-type cracks and mold flux infiltration for the steel continuous casting in this study. The mold simulator results indicated that the depression and longitudinal crack become more serious with the increasing of mold cooling intensities. Furthermore, when the cooling intensity enhanced from 3.5 to 7.5 L/min, the average solidification factor of shell increased rapidly from 2.37 to 2.91 (mm/s)1/2, and the mean heat flux in the initial solidified shells with depressions reduced by 0.723 MW/m2 during the initial 0 to 1.5 seconds solidification stage. In addition, the higher mold cooling intensities of 6.0 to 7.5 L/min could result in an increasing of slag film thickness and the formation of amorphous slag, which contributed to the uneven infiltration of mold flux.","PeriodicalId":51126,"journal":{"name":"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science","volume":"44 1","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Mold Cooling Intensity on the Depression-Type Crack Formation and Mold Flux Infiltration During Continuous Casting Process\",\"authors\":\"Fengkang Wang, Hang He, Wanlin Wang, Lei Zhang, Jiaxi Chen, Jiang Du, Jie Zeng\",\"doi\":\"10.1007/s11663-023-02911-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As one of the most serious defects in the products of continuous casting steel, the surface depressions with longitudinal cracks originated from the mold were clearly characterized. A mold simulator technique was developed to investigate the effects of different mold cooling flow rates (3.5, 6.0, 7.5 L/min) on the evolution of depression-type cracks and mold flux infiltration for the steel continuous casting in this study. The mold simulator results indicated that the depression and longitudinal crack become more serious with the increasing of mold cooling intensities. Furthermore, when the cooling intensity enhanced from 3.5 to 7.5 L/min, the average solidification factor of shell increased rapidly from 2.37 to 2.91 (mm/s)1/2, and the mean heat flux in the initial solidified shells with depressions reduced by 0.723 MW/m2 during the initial 0 to 1.5 seconds solidification stage. In addition, the higher mold cooling intensities of 6.0 to 7.5 L/min could result in an increasing of slag film thickness and the formation of amorphous slag, which contributed to the uneven infiltration of mold flux.\",\"PeriodicalId\":51126,\"journal\":{\"name\":\"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11663-023-02911-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-023-02911-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Mold Cooling Intensity on the Depression-Type Crack Formation and Mold Flux Infiltration During Continuous Casting Process
As one of the most serious defects in the products of continuous casting steel, the surface depressions with longitudinal cracks originated from the mold were clearly characterized. A mold simulator technique was developed to investigate the effects of different mold cooling flow rates (3.5, 6.0, 7.5 L/min) on the evolution of depression-type cracks and mold flux infiltration for the steel continuous casting in this study. The mold simulator results indicated that the depression and longitudinal crack become more serious with the increasing of mold cooling intensities. Furthermore, when the cooling intensity enhanced from 3.5 to 7.5 L/min, the average solidification factor of shell increased rapidly from 2.37 to 2.91 (mm/s)1/2, and the mean heat flux in the initial solidified shells with depressions reduced by 0.723 MW/m2 during the initial 0 to 1.5 seconds solidification stage. In addition, the higher mold cooling intensities of 6.0 to 7.5 L/min could result in an increasing of slag film thickness and the formation of amorphous slag, which contributed to the uneven infiltration of mold flux.
期刊介绍:
Focused on process metallurgy and materials processing science, Metallurgical and Materials Transactions B contains only original, critically reviewed research on primary manufacturing processes, from extractive metallurgy to the making of a shape.
A joint publication of ASM International and TMS (The Minerals, Metals and Materials Society), Metallurgical and Materials Transactions B publishes contributions bimonthly on the theoretical and engineering aspects of the processing of metals and other materials, including studies of electro- and physical chemistry, mass transport, modeling and related computer applications.
Articles cover extractive and process metallurgy, pyrometallurgy, hydrometallurgy, electrometallurgy, transport phenomena, process control, physical chemistry, solidification, mechanical working, solid state reactions, composite materials, materials processing and the environment.