用机器学习技术预测沥青填充胶的流变性能

IF 0.6 Q3 ENGINEERING, MULTIDISCIPLINARY Jurnal Kejuruteraan Pub Date : 2023-07-30 DOI:10.17576/jkukm-2023-35(4)-11
Abdalrhman Milad, Amirah Haziqah Mohamad Zaki, Hend Ali Omar, Shaban Ismael Albrka Ali, Naeem Aziz Memon, Nur Izzi Md. Yusof
{"title":"用机器学习技术预测沥青填充胶的流变性能","authors":"Abdalrhman Milad, Amirah Haziqah Mohamad Zaki, Hend Ali Omar, Shaban Ismael Albrka Ali, Naeem Aziz Memon, Nur Izzi Md. Yusof","doi":"10.17576/jkukm-2023-35(4)-11","DOIUrl":null,"url":null,"abstract":"This study uses the artificial neural network and response surface methodology to develop two models for predicting the rheological properties, complex modulus (G*) and phase angle (δ) of bitumen-filler mastic. It also analyses and evaluates the accuracy of both models by determining the coefficient of determination (R2), mean squared error (MSE), and root mean squared error (RMSE). The prediction models use the G* and δ data from a previous study by researchers at the Nottingham Transportation Engineering Centre to determine three types of bitumen-filler mastic (limestone, cement and grit stone) with varying filler concentrations of 15, 35, 40 and 65%. The analysis shows that both models perform well in predicting the rheological properties of bitumen-filler mastic. A comparison of the two models shows that the artificial neural network (ANN) has higher accuracy than the response surface methodology model, with an R2 value exceeding 0.92. The results of the ANN achieve a higher R2 value and lower MSE and RMSE values. In summary, the performance of the artificial neural network model is better than the response surface methodology model, which uses the full quadratic, pure quadratic, linear and interaction mathematical methods.","PeriodicalId":17688,"journal":{"name":"Jurnal Kejuruteraan","volume":"9 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting the Rheological Properties of Bitumen-Filler Mastic Using Machine Learning Techniques\",\"authors\":\"Abdalrhman Milad, Amirah Haziqah Mohamad Zaki, Hend Ali Omar, Shaban Ismael Albrka Ali, Naeem Aziz Memon, Nur Izzi Md. Yusof\",\"doi\":\"10.17576/jkukm-2023-35(4)-11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study uses the artificial neural network and response surface methodology to develop two models for predicting the rheological properties, complex modulus (G*) and phase angle (δ) of bitumen-filler mastic. It also analyses and evaluates the accuracy of both models by determining the coefficient of determination (R2), mean squared error (MSE), and root mean squared error (RMSE). The prediction models use the G* and δ data from a previous study by researchers at the Nottingham Transportation Engineering Centre to determine three types of bitumen-filler mastic (limestone, cement and grit stone) with varying filler concentrations of 15, 35, 40 and 65%. The analysis shows that both models perform well in predicting the rheological properties of bitumen-filler mastic. A comparison of the two models shows that the artificial neural network (ANN) has higher accuracy than the response surface methodology model, with an R2 value exceeding 0.92. The results of the ANN achieve a higher R2 value and lower MSE and RMSE values. In summary, the performance of the artificial neural network model is better than the response surface methodology model, which uses the full quadratic, pure quadratic, linear and interaction mathematical methods.\",\"PeriodicalId\":17688,\"journal\":{\"name\":\"Jurnal Kejuruteraan\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kejuruteraan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17576/jkukm-2023-35(4)-11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kejuruteraan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17576/jkukm-2023-35(4)-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用人工神经网络和响应面方法,建立了沥青填料胶泥流变特性、复模量(G*)和相位角(δ)的预测模型。本文还通过确定决定系数(R2)、均方误差(MSE)和均方根误差(RMSE)来分析和评估两种模型的准确性。预测模型使用诺丁汉交通工程中心研究人员先前研究的G*和δ数据来确定三种类型的沥青填料胶泥(石灰石、水泥和砂石),填料浓度分别为15%、35%、40%和65%。分析表明,两种模型均能较好地预测沥青填料胶泥的流变性能。两种模型的比较表明,人工神经网络(ANN)模型的精度高于响应面法模型,R2值超过0.92。人工神经网络的结果实现了更高的R2值和更低的MSE和RMSE值。综上所述,人工神经网络模型的性能优于响应面方法模型,响应面方法采用全二次、纯二次、线性和交互数学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting the Rheological Properties of Bitumen-Filler Mastic Using Machine Learning Techniques
This study uses the artificial neural network and response surface methodology to develop two models for predicting the rheological properties, complex modulus (G*) and phase angle (δ) of bitumen-filler mastic. It also analyses and evaluates the accuracy of both models by determining the coefficient of determination (R2), mean squared error (MSE), and root mean squared error (RMSE). The prediction models use the G* and δ data from a previous study by researchers at the Nottingham Transportation Engineering Centre to determine three types of bitumen-filler mastic (limestone, cement and grit stone) with varying filler concentrations of 15, 35, 40 and 65%. The analysis shows that both models perform well in predicting the rheological properties of bitumen-filler mastic. A comparison of the two models shows that the artificial neural network (ANN) has higher accuracy than the response surface methodology model, with an R2 value exceeding 0.92. The results of the ANN achieve a higher R2 value and lower MSE and RMSE values. In summary, the performance of the artificial neural network model is better than the response surface methodology model, which uses the full quadratic, pure quadratic, linear and interaction mathematical methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jurnal Kejuruteraan
Jurnal Kejuruteraan ENGINEERING, MULTIDISCIPLINARY-
自引率
16.70%
发文量
0
审稿时长
24 weeks
期刊最新文献
3D Printed Carbon Fibre Reinforced Polyamides in High Temperature An App for Parking with Indoor Navigation Facility Numerical Analysis of Structural Batteries Response with the Presence of Uncertainty Experimental Investigation of Mechanical and Microstructural Properties of Concrete Containing Bentonite and Dolomite as a Partial Replacement of Cement The Design of Stroke Rehabilitation Using Artificial Intelligence K.A.K.I (Kinesthetic Augmented Kinematic Inference)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1