无模型 GPU 在线能源优化

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2023-09-13 DOI:10.1109/TSUSC.2023.3314916
Farui Wang;Meng Hao;Weizhe Zhang;Zheng Wang
{"title":"无模型 GPU 在线能源优化","authors":"Farui Wang;Meng Hao;Weizhe Zhang;Zheng Wang","doi":"10.1109/TSUSC.2023.3314916","DOIUrl":null,"url":null,"abstract":"GPUs play a central and indispensable role as accelerators in modern high-performance computing (HPC) platforms, enabling a wide range of tasks to be performed efficiently. However, the use of GPUs also results in significant energy consumption and carbon dioxide (CO2) emissions. This article presents MF-GPOEO, a model-free GPU online energy efficiency optimization framework. MF-GPOEO leverages a synthetic performance index and a PID controller to dynamically determine the optimal clock frequency configuration for GPUs. It profiles GPU kernel activity information under different frequency configurations and then compares GPU kernel execution time and gap duration between kernels to derive the synthetic performance index. With the performance index and measured average power, MF-GPOEO can use the PID controller to try different frequency configurations and find the optimal frequency configuration under the guidance of user-defined objective functions. We evaluate the MF-GPOEO by running it with 74 applications on an NVIDIA RTX3080Ti GPU. MF-GPOEO delivers a mean energy saving of 26.2% with a slight average execution time increase of 3.4% compared with NVIDIA's default clock scheduling strategy.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 2","pages":"141-154"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-Free GPU Online Energy Optimization\",\"authors\":\"Farui Wang;Meng Hao;Weizhe Zhang;Zheng Wang\",\"doi\":\"10.1109/TSUSC.2023.3314916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPUs play a central and indispensable role as accelerators in modern high-performance computing (HPC) platforms, enabling a wide range of tasks to be performed efficiently. However, the use of GPUs also results in significant energy consumption and carbon dioxide (CO2) emissions. This article presents MF-GPOEO, a model-free GPU online energy efficiency optimization framework. MF-GPOEO leverages a synthetic performance index and a PID controller to dynamically determine the optimal clock frequency configuration for GPUs. It profiles GPU kernel activity information under different frequency configurations and then compares GPU kernel execution time and gap duration between kernels to derive the synthetic performance index. With the performance index and measured average power, MF-GPOEO can use the PID controller to try different frequency configurations and find the optimal frequency configuration under the guidance of user-defined objective functions. We evaluate the MF-GPOEO by running it with 74 applications on an NVIDIA RTX3080Ti GPU. MF-GPOEO delivers a mean energy saving of 26.2% with a slight average execution time increase of 3.4% compared with NVIDIA's default clock scheduling strategy.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 2\",\"pages\":\"141-154\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10250962/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10250962/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在现代高性能计算(HPC)平台中,GPU 作为加速器发挥着不可或缺的核心作用,使各种任务得以高效执行。然而,GPU 的使用也导致了大量的能源消耗和二氧化碳(CO2)排放。本文介绍了无模型 GPU 在线能效优化框架 MF-GPOEO。MF-GPOEO 利用合成性能指标和 PID 控制器来动态确定 GPU 的最佳时钟频率配置。它剖析不同频率配置下的 GPU 内核活动信息,然后比较 GPU 内核执行时间和内核之间的间隙持续时间,从而得出合成性能指数。有了性能指数和测得的平均功率,MF-GPOEO 就能使用 PID 控制器尝试不同的频率配置,并在用户自定义目标函数的指导下找到最佳频率配置。我们通过在英伟达 RTX3080Ti GPU 上运行 74 个应用程序对 MF-GPOEO 进行了评估。与英伟达默认的时钟调度策略相比,MF-GPOEO 平均节能 26.2%,平均执行时间略微增加 3.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model-Free GPU Online Energy Optimization
GPUs play a central and indispensable role as accelerators in modern high-performance computing (HPC) platforms, enabling a wide range of tasks to be performed efficiently. However, the use of GPUs also results in significant energy consumption and carbon dioxide (CO2) emissions. This article presents MF-GPOEO, a model-free GPU online energy efficiency optimization framework. MF-GPOEO leverages a synthetic performance index and a PID controller to dynamically determine the optimal clock frequency configuration for GPUs. It profiles GPU kernel activity information under different frequency configurations and then compares GPU kernel execution time and gap duration between kernels to derive the synthetic performance index. With the performance index and measured average power, MF-GPOEO can use the PID controller to try different frequency configurations and find the optimal frequency configuration under the guidance of user-defined objective functions. We evaluate the MF-GPOEO by running it with 74 applications on an NVIDIA RTX3080Ti GPU. MF-GPOEO delivers a mean energy saving of 26.2% with a slight average execution time increase of 3.4% compared with NVIDIA's default clock scheduling strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Editorial Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach 2024 Reviewers List Deadline-Aware Cost and Energy Efficient Offloading in Mobile Edge Computing Impacts of Increasing Temperature and Relative Humidity in Air-Cooled Tropical Data Centers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1