可解释人工智能的出现和需求

Harmon Lee Bruce Chia
{"title":"可解释人工智能的出现和需求","authors":"Harmon Lee Bruce Chia","doi":"10.54254/2977-3903/3/2023023","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) systems, particularly deep learning models, have revolutionized numerous sectors with their unprecedented performance capabilities. However, the intricate structures of these models often result in a \"black-box\" characterization, making their decisions difficult to understand and trust. Explainable AI (XAI) emerges as a solution, aiming to unveil the inner workings of complex AI systems. This paper embarks on a comprehensive exploration of prominent XAI techniques, evaluating their effectiveness, comprehensibility, and robustness across diverse datasets. Our findings highlight that while certain techniques excel in offering transparent explanations, others provide a cohesive understanding across varied models. The study accentuates the importance of crafting AI systems that seamlessly marry performance with interpretability, fostering trust and facilitating broader AI adoption in decision-critical domains.","PeriodicalId":476183,"journal":{"name":"Advances in Engineering Innovation","volume":"16 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The emergence and need for explainable AI\",\"authors\":\"Harmon Lee Bruce Chia\",\"doi\":\"10.54254/2977-3903/3/2023023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial Intelligence (AI) systems, particularly deep learning models, have revolutionized numerous sectors with their unprecedented performance capabilities. However, the intricate structures of these models often result in a \\\"black-box\\\" characterization, making their decisions difficult to understand and trust. Explainable AI (XAI) emerges as a solution, aiming to unveil the inner workings of complex AI systems. This paper embarks on a comprehensive exploration of prominent XAI techniques, evaluating their effectiveness, comprehensibility, and robustness across diverse datasets. Our findings highlight that while certain techniques excel in offering transparent explanations, others provide a cohesive understanding across varied models. The study accentuates the importance of crafting AI systems that seamlessly marry performance with interpretability, fostering trust and facilitating broader AI adoption in decision-critical domains.\",\"PeriodicalId\":476183,\"journal\":{\"name\":\"Advances in Engineering Innovation\",\"volume\":\"16 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Engineering Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54254/2977-3903/3/2023023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Engineering Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54254/2977-3903/3/2023023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工智能(AI)系统,特别是深度学习模型,以其前所未有的性能能力彻底改变了许多行业。然而,这些模型的复杂结构经常导致“黑盒”特征,使他们的决定难以理解和信任。可解释人工智能(XAI)作为一种解决方案出现,旨在揭示复杂人工智能系统的内部工作原理。本文对突出的XAI技术进行了全面的探索,评估了它们在不同数据集上的有效性、可理解性和鲁棒性。我们的研究结果强调,虽然某些技术在提供透明的解释方面表现出色,但其他技术在不同模型之间提供了连贯的理解。该研究强调了打造人工智能系统的重要性,该系统将性能与可解释性无缝结合,促进信任,并促进在关键决策领域更广泛地采用人工智能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The emergence and need for explainable AI
Artificial Intelligence (AI) systems, particularly deep learning models, have revolutionized numerous sectors with their unprecedented performance capabilities. However, the intricate structures of these models often result in a "black-box" characterization, making their decisions difficult to understand and trust. Explainable AI (XAI) emerges as a solution, aiming to unveil the inner workings of complex AI systems. This paper embarks on a comprehensive exploration of prominent XAI techniques, evaluating their effectiveness, comprehensibility, and robustness across diverse datasets. Our findings highlight that while certain techniques excel in offering transparent explanations, others provide a cohesive understanding across varied models. The study accentuates the importance of crafting AI systems that seamlessly marry performance with interpretability, fostering trust and facilitating broader AI adoption in decision-critical domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring methods to make AI decisions more transparent and understandable for humans Natural language processing for business analytics The quality improvement method of vibroseis records The emergence and need for explainable AI AI in cloud computing: Exploring how cloud providers can leverage AI to optimize resource allocation, improve scalability, and offer AI-as-a-service solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1