超级电容器的3D MXenes:现状、机遇和挑战

IF 9.1 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Progress in Solid State Chemistry Pub Date : 2023-12-01 DOI:10.1016/j.progsolidstchem.2023.100425
Sonali Verma , Bhavya Padha , Sheng-Joue Young , Yen-Lin Chu , Rajesh Bhardwaj , Rajneesh Kumar Mishra , Sandeep Arya
{"title":"超级电容器的3D MXenes:现状、机遇和挑战","authors":"Sonali Verma ,&nbsp;Bhavya Padha ,&nbsp;Sheng-Joue Young ,&nbsp;Yen-Lin Chu ,&nbsp;Rajesh Bhardwaj ,&nbsp;Rajneesh Kumar Mishra ,&nbsp;Sandeep Arya","doi":"10.1016/j.progsolidstchem.2023.100425","DOIUrl":null,"url":null,"abstract":"<div><p><span>Being a highly proficient material for electrochemical energy storage systems, MXene is gaining popularity. MXene pseudocapacitive charge storage system with electric double layer behaviour has improved the efficiency of </span>supercapacitors<span>. Furthermore, the proper interlayer spacing and distinct chemistry have enabled batteries to attain high capacity while enabling quick charge-discharge. Such breakthroughs are a result of MXene inherent characteristics, including its strong electrical conductivity, well defined layered structure, and capacity for modification, which allows it to customize electrodes to a particular purpose. Additionally, MXenes have shown their value by allowing supercapacitors and batteries to defy convention and explore the world of hybrid capacitors, micro-supercapacitors (MSCs), and batteries other than Li-ion. This article covers the MXene-based supercapcitor electrodes and difficulties associated with them. By using logical analysis, we also present several important directions for future study that could assist in resolving these issues and enabling the family of MXene materials to reach its full potential.</span></p></div>","PeriodicalId":415,"journal":{"name":"Progress in Solid State Chemistry","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D MXenes for supercapacitors: Current status, opportunities and challenges\",\"authors\":\"Sonali Verma ,&nbsp;Bhavya Padha ,&nbsp;Sheng-Joue Young ,&nbsp;Yen-Lin Chu ,&nbsp;Rajesh Bhardwaj ,&nbsp;Rajneesh Kumar Mishra ,&nbsp;Sandeep Arya\",\"doi\":\"10.1016/j.progsolidstchem.2023.100425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Being a highly proficient material for electrochemical energy storage systems, MXene is gaining popularity. MXene pseudocapacitive charge storage system with electric double layer behaviour has improved the efficiency of </span>supercapacitors<span>. Furthermore, the proper interlayer spacing and distinct chemistry have enabled batteries to attain high capacity while enabling quick charge-discharge. Such breakthroughs are a result of MXene inherent characteristics, including its strong electrical conductivity, well defined layered structure, and capacity for modification, which allows it to customize electrodes to a particular purpose. Additionally, MXenes have shown their value by allowing supercapacitors and batteries to defy convention and explore the world of hybrid capacitors, micro-supercapacitors (MSCs), and batteries other than Li-ion. This article covers the MXene-based supercapcitor electrodes and difficulties associated with them. By using logical analysis, we also present several important directions for future study that could assist in resolving these issues and enabling the family of MXene materials to reach its full potential.</span></p></div>\",\"PeriodicalId\":415,\"journal\":{\"name\":\"Progress in Solid State Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Solid State Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079678623000365\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079678623000365","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

作为电化学储能系统的高性能材料,MXene越来越受欢迎。具有双电层特性的MXene伪电容电荷存储系统提高了超级电容器的效率。此外,适当的层间距和独特的化学性质使电池能够在实现快速充放电的同时获得高容量。这些突破是MXene固有特性的结果,包括其强大的导电性、明确的分层结构和修改能力,这使得它可以根据特定目的定制电极。此外,MXenes通过让超级电容器和电池打破常规,探索混合电容器、微型超级电容器(MSCs)和锂离子电池的世界,展示了它们的价值。本文介绍了基于mxene的超级电容器电极及其相关的困难。通过逻辑分析,我们还提出了未来研究的几个重要方向,这些方向可以帮助解决这些问题,并使MXene材料家族充分发挥其潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D MXenes for supercapacitors: Current status, opportunities and challenges

Being a highly proficient material for electrochemical energy storage systems, MXene is gaining popularity. MXene pseudocapacitive charge storage system with electric double layer behaviour has improved the efficiency of supercapacitors. Furthermore, the proper interlayer spacing and distinct chemistry have enabled batteries to attain high capacity while enabling quick charge-discharge. Such breakthroughs are a result of MXene inherent characteristics, including its strong electrical conductivity, well defined layered structure, and capacity for modification, which allows it to customize electrodes to a particular purpose. Additionally, MXenes have shown their value by allowing supercapacitors and batteries to defy convention and explore the world of hybrid capacitors, micro-supercapacitors (MSCs), and batteries other than Li-ion. This article covers the MXene-based supercapcitor electrodes and difficulties associated with them. By using logical analysis, we also present several important directions for future study that could assist in resolving these issues and enabling the family of MXene materials to reach its full potential.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Solid State Chemistry
Progress in Solid State Chemistry 化学-无机化学与核化学
CiteScore
14.10
自引率
3.30%
发文量
12
期刊介绍: Progress in Solid State Chemistry offers critical reviews and specialized articles written by leading experts in the field, providing a comprehensive view of solid-state chemistry. It addresses the challenge of dispersed literature by offering up-to-date assessments of research progress and recent developments. Emphasis is placed on the relationship between physical properties and structural chemistry, particularly imperfections like vacancies and dislocations. The reviews published in Progress in Solid State Chemistry emphasize critical evaluation of the field, along with indications of current problems and future directions. Papers are not intended to be bibliographic in nature but rather to inform a broad range of readers in an inherently multidisciplinary field by providing expert treatises oriented both towards specialists in different areas of the solid state and towards nonspecialists. The authorship is international, and the subject matter will be of interest to chemists, materials scientists, physicists, metallurgists, crystallographers, ceramists, and engineers interested in the solid state.
期刊最新文献
Impeding conduction by breaking the charge carrier hopping in charge-ordered perovskite BaBiO3 (BaBi0.53+Bi0.55+O3): Experimental and theoretical electronic structural correlations Editorial Board Influence of initial crystalline phase of TiO2 to obtain TiN thin films from sol-gel route by rapid thermal nitridation process Unusual Tm3+ sensitization-induced white-emitting and thermostable improvement in Ba2Y2Ge4O13:Dy3+ phosphor for solid-state lighting and optical thermometry Editorial ISNT 2023
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1