{"title":"具有高机械和电化学性能的准固体聚合物电解质结构电池","authors":"Gerald Singer, Cheng-Tien Hsieh, Tianwei Jin, Seung Hoon Lee, Yuan Yang","doi":"10.1002/eom2.12418","DOIUrl":null,"url":null,"abstract":"<p>Structural batteries are attractive for weight reduction in electric transportation. For their practical applications excellent mechanical properties and electrochemical performance are required simultaneously, which remains a grand challenge. In this study, we present a new scalable and low-cost design, which uses a quasi-solid polymer electrolyte (QSPE) to achieve both remarkably improved flexural properties and attractive energy density. The QSPE has a high ionic conductivity of 1.2 mS cm<sup>−1</sup> and retains 91% capacity over 500 cycles in graphite/NMC532 cells. Moreover, the resulting structural batteries achieved a modulus of 21.7 GPa and a specific energy of 127 Wh kg<sup>−1</sup> based on the total cell weight, which to our knowledge is the highest reported value above 15 GPa. We further demonstrate the application of such structural batteries in a model electric car. The presented design concept enables the industrialization of structural batteries in electric transportation and further applications to improve energy efficiency and multifunctionality.</p><p>\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93174,"journal":{"name":"EcoMat","volume":"5 12","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12418","citationCount":"0","resultStr":"{\"title\":\"A quasi-solid polymer electrolyte-based structural battery with high mechanical and electrochemical performance\",\"authors\":\"Gerald Singer, Cheng-Tien Hsieh, Tianwei Jin, Seung Hoon Lee, Yuan Yang\",\"doi\":\"10.1002/eom2.12418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Structural batteries are attractive for weight reduction in electric transportation. For their practical applications excellent mechanical properties and electrochemical performance are required simultaneously, which remains a grand challenge. In this study, we present a new scalable and low-cost design, which uses a quasi-solid polymer electrolyte (QSPE) to achieve both remarkably improved flexural properties and attractive energy density. The QSPE has a high ionic conductivity of 1.2 mS cm<sup>−1</sup> and retains 91% capacity over 500 cycles in graphite/NMC532 cells. Moreover, the resulting structural batteries achieved a modulus of 21.7 GPa and a specific energy of 127 Wh kg<sup>−1</sup> based on the total cell weight, which to our knowledge is the highest reported value above 15 GPa. We further demonstrate the application of such structural batteries in a model electric car. The presented design concept enables the industrialization of structural batteries in electric transportation and further applications to improve energy efficiency and multifunctionality.</p><p>\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":93174,\"journal\":{\"name\":\"EcoMat\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eom2.12418\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EcoMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EcoMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eom2.12418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A quasi-solid polymer electrolyte-based structural battery with high mechanical and electrochemical performance
Structural batteries are attractive for weight reduction in electric transportation. For their practical applications excellent mechanical properties and electrochemical performance are required simultaneously, which remains a grand challenge. In this study, we present a new scalable and low-cost design, which uses a quasi-solid polymer electrolyte (QSPE) to achieve both remarkably improved flexural properties and attractive energy density. The QSPE has a high ionic conductivity of 1.2 mS cm−1 and retains 91% capacity over 500 cycles in graphite/NMC532 cells. Moreover, the resulting structural batteries achieved a modulus of 21.7 GPa and a specific energy of 127 Wh kg−1 based on the total cell weight, which to our knowledge is the highest reported value above 15 GPa. We further demonstrate the application of such structural batteries in a model electric car. The presented design concept enables the industrialization of structural batteries in electric transportation and further applications to improve energy efficiency and multifunctionality.