具有Zn2+ (de)插层和I−/I2氧化还原双重机理的BiI3-Zn水溶液电池

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-11-03 DOI:10.1016/j.jechem.2023.10.035
Qi Deng , Fangzhong Liu , Xiongwei Wu , Changzhu Li , Weibin Zhou , Bei Long
{"title":"具有Zn2+ (de)插层和I−/I2氧化还原双重机理的BiI3-Zn水溶液电池","authors":"Qi Deng ,&nbsp;Fangzhong Liu ,&nbsp;Xiongwei Wu ,&nbsp;Changzhu Li ,&nbsp;Weibin Zhou ,&nbsp;Bei Long","doi":"10.1016/j.jechem.2023.10.035","DOIUrl":null,"url":null,"abstract":"<div><p>The development of aqueous battery with dual mechanisms is now arousing more and more interest. The dual mechanisms of Zn<sup>2+</sup> (de)intercalation and I<sup>−</sup>/I<sub>2</sub> redox bring unexpected effects. Herein, differing from previous studies using ZnI<sub>2</sub> additive, this work designs an aqueous BiI<sub>3</sub>-Zn battery with self-supplied I<sup>−</sup>. Ex situ tests reveal the conversion of BiI<sub>3</sub> into Bi (discharge) and BiOI (charge) at the 1st cycle and the dissolved I<sup>−</sup> in electrolyte. The active I<sup>−</sup> species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product. Furthermore, the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species, proven by experimental and theoretical studies. Accordingly, the well-designed BiI<sub>3</sub>-Zn battery delivers a high reversible capacity of 182 mA h g<sup>−1</sup> at 0.2 A g<sup>−1</sup>, an excellent rate capability with 88 mA h g<sup>−1</sup> at 10 A g<sup>−1</sup>, and an impressive cyclability with 63% capacity retention over 20 K cycles at 10 A g<sup>−1</sup>. An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm<sup>−2</sup>. Moreover, a flexible quasi-solid-state BiI<sub>3</sub>-Zn battery exhibits satisfactory battery performances. This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"89 ","pages":"Pages 670-678"},"PeriodicalIF":14.0000,"publicationDate":"2023-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An aqueous BiI3-Zn battery with dual mechanisms of Zn2+ (de)intercalation and I−/I2 redox\",\"authors\":\"Qi Deng ,&nbsp;Fangzhong Liu ,&nbsp;Xiongwei Wu ,&nbsp;Changzhu Li ,&nbsp;Weibin Zhou ,&nbsp;Bei Long\",\"doi\":\"10.1016/j.jechem.2023.10.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of aqueous battery with dual mechanisms is now arousing more and more interest. The dual mechanisms of Zn<sup>2+</sup> (de)intercalation and I<sup>−</sup>/I<sub>2</sub> redox bring unexpected effects. Herein, differing from previous studies using ZnI<sub>2</sub> additive, this work designs an aqueous BiI<sub>3</sub>-Zn battery with self-supplied I<sup>−</sup>. Ex situ tests reveal the conversion of BiI<sub>3</sub> into Bi (discharge) and BiOI (charge) at the 1st cycle and the dissolved I<sup>−</sup> in electrolyte. The active I<sup>−</sup> species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product. Furthermore, the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species, proven by experimental and theoretical studies. Accordingly, the well-designed BiI<sub>3</sub>-Zn battery delivers a high reversible capacity of 182 mA h g<sup>−1</sup> at 0.2 A g<sup>−1</sup>, an excellent rate capability with 88 mA h g<sup>−1</sup> at 10 A g<sup>−1</sup>, and an impressive cyclability with 63% capacity retention over 20 K cycles at 10 A g<sup>−1</sup>. An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm<sup>−2</sup>. Moreover, a flexible quasi-solid-state BiI<sub>3</sub>-Zn battery exhibits satisfactory battery performances. This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"89 \",\"pages\":\"Pages 670-678\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623006058\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623006058","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

双机理水电池的发展越来越引起人们的关注。Zn2+ (de)插层和I−/I2氧化还原的双重机制带来了意想不到的效果。在此,与以往使用ni - 2添加剂的研究不同,本研究设计了一种具有自供I -的BiI3-Zn水电池。非原位测试表明,在第一次循环时,BiI3转化为Bi(放电)和BiOI(充电),并溶解在电解质中。活性I−物质提高了电极的比容量和放电中压,促进了Zn枝晶和副产物的生成。此外,通过实验和理论研究证明,多孔硬碳可以提高材料的电子/离子电导率和吸附碘类物质。因此,设计良好的BiI3-Zn电池在0.2 a g - 1时具有182 mA h g - 1的高可逆容量,在10 a g - 1时具有88 mA h g - 1的出色倍率能力,并且在10 a g - 1时具有令人印象深刻的可循环性,在20 K循环中具有63%的容量保持率。即使在6 mg cm−2的高质量负载下,也获得了优异的电化学性能。此外,柔性准固态BiI3-Zn电池表现出令人满意的电池性能。本研究为设计高性能双机构水电池提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An aqueous BiI3-Zn battery with dual mechanisms of Zn2+ (de)intercalation and I−/I2 redox

The development of aqueous battery with dual mechanisms is now arousing more and more interest. The dual mechanisms of Zn2+ (de)intercalation and I/I2 redox bring unexpected effects. Herein, differing from previous studies using ZnI2 additive, this work designs an aqueous BiI3-Zn battery with self-supplied I. Ex situ tests reveal the conversion of BiI3 into Bi (discharge) and BiOI (charge) at the 1st cycle and the dissolved I in electrolyte. The active I species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product. Furthermore, the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species, proven by experimental and theoretical studies. Accordingly, the well-designed BiI3-Zn battery delivers a high reversible capacity of 182 mA h g−1 at 0.2 A g−1, an excellent rate capability with 88 mA h g−1 at 10 A g−1, and an impressive cyclability with 63% capacity retention over 20 K cycles at 10 A g−1. An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm−2. Moreover, a flexible quasi-solid-state BiI3-Zn battery exhibits satisfactory battery performances. This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Durable poly(binaphthyl-co-p-terphenyl piperidinium)-based anion exchange membranes with dual side chains Tuning the surface electronic structure of noble metal aerogels to promote the electrocatalytic oxygen reduction Sulfur doped iron-nitrogen-hard carbon nanosheets as efficient and robust noble metal-free catalysts for oxygen reduction reaction in PEMFC A new review of single-ion conducting polymer electrolytes in the light of ion transport mechanisms Chemico-biological conversion of carbon dioxide
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1