Norbert Caldera, Antonio Teixell, Albert Griera, Pierre Labaume, Marc Guardia
{"title":"上伊比利亚碰撞边缘的高山韧性变形(法国比利牛斯山脉中西部的Eaux - Chaudes地块)","authors":"Norbert Caldera, Antonio Teixell, Albert Griera, Pierre Labaume, Marc Guardia","doi":"10.1029/2023tc007828","DOIUrl":null,"url":null,"abstract":"Abstract The Eaux‐Chaudes massif provides keys to unravel the deep‐seated deformation of the Iberian rifted margin during the Alpine orogeny in the Pyrenees. The massif conforms to an inlier of upper Cretaceous carbonate rocks within the Paleozoic basement of the western Axial Zone, originally deposited in the upper margin shelf before the Cenozoic collision. New geological mapping and cross‐section construction lead to the description of the lateral structural variation from a km‐scale fold nappe in the west to a ductile, imbricate fold‐thrust fan in the east. The transition from a Variscan pluton to Devonian metasediments underlying the autochthonous Cretaceous induced this structural change. Recumbent folding, which involved upper Paleozoic rocks, was facilitated by a lower detachment in Silurian slates and an upper detachment in an overlying Keuper shale and evaporite thrust sheet. Remnants of this allochthonous sheet form shale and ophite bodies pinched within the upper Cretaceous carbonates, conforming unusual tertiary welds. Ductile shear in the overturned limb of the Eaux‐Chaudes fold nappe imparted strong mylonitic foliation in carbonate rocks, often accompanied by N‐S stretching lineation and top‐to‐the‐south kinematic indicators. The burial of the massif by basement‐involved thrust sheets and the Keuper sheet, along with their Mesozoic‐Cenozoic cover, account for ductile deformation conditions and a structural style not reported hitherto for the Alpine Pyrenees. A hypothesis for the tectonic restoration of this part of the Pyrenean hinterland is finally proposed.","PeriodicalId":22351,"journal":{"name":"Tectonics","volume":"100 3","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alpine Ductile Deformation of the Upper Iberian Collided Margin (Eaux‐Chaudes Massif, West‐Central Pyrenean Hinterland, France)\",\"authors\":\"Norbert Caldera, Antonio Teixell, Albert Griera, Pierre Labaume, Marc Guardia\",\"doi\":\"10.1029/2023tc007828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Eaux‐Chaudes massif provides keys to unravel the deep‐seated deformation of the Iberian rifted margin during the Alpine orogeny in the Pyrenees. The massif conforms to an inlier of upper Cretaceous carbonate rocks within the Paleozoic basement of the western Axial Zone, originally deposited in the upper margin shelf before the Cenozoic collision. New geological mapping and cross‐section construction lead to the description of the lateral structural variation from a km‐scale fold nappe in the west to a ductile, imbricate fold‐thrust fan in the east. The transition from a Variscan pluton to Devonian metasediments underlying the autochthonous Cretaceous induced this structural change. Recumbent folding, which involved upper Paleozoic rocks, was facilitated by a lower detachment in Silurian slates and an upper detachment in an overlying Keuper shale and evaporite thrust sheet. Remnants of this allochthonous sheet form shale and ophite bodies pinched within the upper Cretaceous carbonates, conforming unusual tertiary welds. Ductile shear in the overturned limb of the Eaux‐Chaudes fold nappe imparted strong mylonitic foliation in carbonate rocks, often accompanied by N‐S stretching lineation and top‐to‐the‐south kinematic indicators. The burial of the massif by basement‐involved thrust sheets and the Keuper sheet, along with their Mesozoic‐Cenozoic cover, account for ductile deformation conditions and a structural style not reported hitherto for the Alpine Pyrenees. A hypothesis for the tectonic restoration of this part of the Pyrenean hinterland is finally proposed.\",\"PeriodicalId\":22351,\"journal\":{\"name\":\"Tectonics\",\"volume\":\"100 3\",\"pages\":\"0\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tectonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1029/2023tc007828\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tectonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1029/2023tc007828","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Alpine Ductile Deformation of the Upper Iberian Collided Margin (Eaux‐Chaudes Massif, West‐Central Pyrenean Hinterland, France)
Abstract The Eaux‐Chaudes massif provides keys to unravel the deep‐seated deformation of the Iberian rifted margin during the Alpine orogeny in the Pyrenees. The massif conforms to an inlier of upper Cretaceous carbonate rocks within the Paleozoic basement of the western Axial Zone, originally deposited in the upper margin shelf before the Cenozoic collision. New geological mapping and cross‐section construction lead to the description of the lateral structural variation from a km‐scale fold nappe in the west to a ductile, imbricate fold‐thrust fan in the east. The transition from a Variscan pluton to Devonian metasediments underlying the autochthonous Cretaceous induced this structural change. Recumbent folding, which involved upper Paleozoic rocks, was facilitated by a lower detachment in Silurian slates and an upper detachment in an overlying Keuper shale and evaporite thrust sheet. Remnants of this allochthonous sheet form shale and ophite bodies pinched within the upper Cretaceous carbonates, conforming unusual tertiary welds. Ductile shear in the overturned limb of the Eaux‐Chaudes fold nappe imparted strong mylonitic foliation in carbonate rocks, often accompanied by N‐S stretching lineation and top‐to‐the‐south kinematic indicators. The burial of the massif by basement‐involved thrust sheets and the Keuper sheet, along with their Mesozoic‐Cenozoic cover, account for ductile deformation conditions and a structural style not reported hitherto for the Alpine Pyrenees. A hypothesis for the tectonic restoration of this part of the Pyrenean hinterland is finally proposed.
期刊介绍:
Tectonics (TECT) presents original scientific contributions that describe and explain the evolution, structure, and deformation of Earth¹s lithosphere. Contributions are welcome from any relevant area of research, including field, laboratory, petrological, geochemical, geochronological, geophysical, remote-sensing, and modeling studies. Multidisciplinary studies are particularly encouraged. Tectonics welcomes studies across the range of geologic time.