通过量子阱厚度渐变合成二维过氧化物晶体

0 CHEMISTRY, MULTIDISCIPLINARY Nature synthesis Pub Date : 2023-10-23 DOI:10.1038/s44160-023-00422-3
Jin Hou, Wenbin Li, Hao Zhang, Siraj Sidhik, Jared Fletcher, Isaac Metcalf, Surendra B. Anantharaman, Xinting Shuai, Anamika Mishra, Jean-Christophe Blancon, Claudine Katan, Deep Jariwala, Jacky Even, Mercouri G. Kanatzidis, Aditya D. Mohite
{"title":"通过量子阱厚度渐变合成二维过氧化物晶体","authors":"Jin Hou, Wenbin Li, Hao Zhang, Siraj Sidhik, Jared Fletcher, Isaac Metcalf, Surendra B. Anantharaman, Xinting Shuai, Anamika Mishra, Jean-Christophe Blancon, Claudine Katan, Deep Jariwala, Jacky Even, Mercouri G. Kanatzidis, Aditya D. Mohite","doi":"10.1038/s44160-023-00422-3","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) multilayered halide perovskites have emerged as a platform for understanding organic–inorganic interactions, tuning quantum confinement effects and realizing efficient and durable optoelectronic devices. However, reproducibly synthesizing 2D perovskite crystals with a perovskite-layer thickness (quantum well thickness, n-value) >2 using existing crystal growth methods is challenging. Here we demonstrate a synthetic method, termed kinetically controlled space confinement, for the growth of phase-pure Ruddlesden–Popper and Dion–Jacobson 2D perovskites. Phase-pure growth is achieved by progressively increasing the temperature (for a fixed time) or the crystallization time (at a fixed temperature), which allows for control of the crystallization kinetics. In situ photoluminescence spectroscopy and imaging suggest that the controlled increase in n-value (from lower to higher values of n = 4, 5 and 6) occurs due to intercalation of excess precursor ions. Based on 250 experimental data sets, phase diagrams for both Ruddlesden–Popper and Dion–Jacobson perovskites have been constructed to predict the growth of 2D phases with specific n-values, facilitating the production of 2D perovskite crystals with desired layer thickness. Synthesizing phase-pure, higher-quantum-well thickness (n) 2D halide perovskites is challenging. Now, a general method, termed kinetically controlled space confinement, to synthesize 2D perovskites is reported. Transformation from low n-values to high n-values is achieved by tuning the temperature or time of crystallization.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of 2D perovskite crystals via progressive transformation of quantum well thickness\",\"authors\":\"Jin Hou, Wenbin Li, Hao Zhang, Siraj Sidhik, Jared Fletcher, Isaac Metcalf, Surendra B. Anantharaman, Xinting Shuai, Anamika Mishra, Jean-Christophe Blancon, Claudine Katan, Deep Jariwala, Jacky Even, Mercouri G. Kanatzidis, Aditya D. Mohite\",\"doi\":\"10.1038/s44160-023-00422-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) multilayered halide perovskites have emerged as a platform for understanding organic–inorganic interactions, tuning quantum confinement effects and realizing efficient and durable optoelectronic devices. However, reproducibly synthesizing 2D perovskite crystals with a perovskite-layer thickness (quantum well thickness, n-value) >2 using existing crystal growth methods is challenging. Here we demonstrate a synthetic method, termed kinetically controlled space confinement, for the growth of phase-pure Ruddlesden–Popper and Dion–Jacobson 2D perovskites. Phase-pure growth is achieved by progressively increasing the temperature (for a fixed time) or the crystallization time (at a fixed temperature), which allows for control of the crystallization kinetics. In situ photoluminescence spectroscopy and imaging suggest that the controlled increase in n-value (from lower to higher values of n = 4, 5 and 6) occurs due to intercalation of excess precursor ions. Based on 250 experimental data sets, phase diagrams for both Ruddlesden–Popper and Dion–Jacobson perovskites have been constructed to predict the growth of 2D phases with specific n-values, facilitating the production of 2D perovskite crystals with desired layer thickness. Synthesizing phase-pure, higher-quantum-well thickness (n) 2D halide perovskites is challenging. Now, a general method, termed kinetically controlled space confinement, to synthesize 2D perovskites is reported. Transformation from low n-values to high n-values is achieved by tuning the temperature or time of crystallization.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-023-00422-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-023-00422-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)多层卤化物包光体已成为了解有机-无机相互作用、调整量子约束效应以及实现高效耐用光电器件的平台。然而,利用现有晶体生长方法重复合成具有包晶层厚度(量子阱厚度,n 值)>2 的二维包晶是一项挑战。在这里,我们展示了一种合成方法(称为动力学控制空间限制),用于生长相纯的 Ruddlesden-Popper 和 Dion-Jacobson 二维包晶。通过逐步提高温度(在固定时间内)或结晶时间(在固定温度下)来实现纯相生长,从而控制结晶动力学。原位光致发光光谱和成像表明,n 值的可控增长(从 n = 4、5 和 6 的较低值到较高值)是由于过量前体离子的插层造成的。在 250 组实验数据的基础上,我们构建了 Ruddlesden-Popper 和 Dion-Jacobson 包晶的相图,以预测具有特定 n 值的二维相的生长,从而促进具有所需晶层厚度的二维包晶的生产。合成相纯、量子孔厚度(n)更高的二维卤化物包晶具有挑战性。现在,一种合成二维包晶的通用方法(称为动力学控制空间限制)被报道出来。通过调节结晶的温度或时间,可以实现从低 n 值到高 n 值的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of 2D perovskite crystals via progressive transformation of quantum well thickness
Two-dimensional (2D) multilayered halide perovskites have emerged as a platform for understanding organic–inorganic interactions, tuning quantum confinement effects and realizing efficient and durable optoelectronic devices. However, reproducibly synthesizing 2D perovskite crystals with a perovskite-layer thickness (quantum well thickness, n-value) >2 using existing crystal growth methods is challenging. Here we demonstrate a synthetic method, termed kinetically controlled space confinement, for the growth of phase-pure Ruddlesden–Popper and Dion–Jacobson 2D perovskites. Phase-pure growth is achieved by progressively increasing the temperature (for a fixed time) or the crystallization time (at a fixed temperature), which allows for control of the crystallization kinetics. In situ photoluminescence spectroscopy and imaging suggest that the controlled increase in n-value (from lower to higher values of n = 4, 5 and 6) occurs due to intercalation of excess precursor ions. Based on 250 experimental data sets, phase diagrams for both Ruddlesden–Popper and Dion–Jacobson perovskites have been constructed to predict the growth of 2D phases with specific n-values, facilitating the production of 2D perovskite crystals with desired layer thickness. Synthesizing phase-pure, higher-quantum-well thickness (n) 2D halide perovskites is challenging. Now, a general method, termed kinetically controlled space confinement, to synthesize 2D perovskites is reported. Transformation from low n-values to high n-values is achieved by tuning the temperature or time of crystallization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
期刊最新文献
From furans to pyrroles Predicting enantioselectivity for diverse substrates Electrochemical etherification and amination Polyhedral expansion of closo-hexaboranes Reproducibility in automated chemistry laboratories using computer science abstractions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1