Igor Pantic, Nikola Topalovic, Peter R. Corridon, Jovana Paunovic
{"title":"使用高级分形分析量化氧化多巴胺诱导的核改变:随机森林机器学习方法","authors":"Igor Pantic, Nikola Topalovic, Peter R. Corridon, Jovana Paunovic","doi":"10.3390/fractalfract7100771","DOIUrl":null,"url":null,"abstract":"Fractal analysis (FA) is a contemporary computational technique that can assist in identifying and assessing nuanced structural alterations in cells and tissues after exposure to certain toxic chemical agents. Its application in toxicology may be particularly valuable for quantifying structural changes in cell nuclei during conventional microscopy assessments. In recent years, the fractal dimension and lacunarity of cell nuclei, considered among the most significant FA features, have been suggested as potentially important indicators of cell damage and death. In this study, we demonstrate the feasibility of developing a random forest machine learning model that employs fractal indicators as input data to identify yeast cells treated with oxidopamine (6-hydroxydopamine, 6-OHDA), a powerful toxin commonly applied in neuroscience research. The model achieves notable classification accuracy and discriminatory power, with an area under the receiver operating characteristics curve of more than 0.8. Moreover, it surpasses alternative decision tree models, such as the gradient-boosting classifier, in differentiating treated cells from their intact counterparts. Despite the methodological challenges associated with fractal analysis and random forest training, this approach offers a promising avenue for the continued exploration of machine learning applications in cellular physiology, pathology, and toxicology.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"286 3","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidopamine-Induced Nuclear Alterations Quantified Using Advanced Fractal Analysis: Random Forest Machine Learning Approach\",\"authors\":\"Igor Pantic, Nikola Topalovic, Peter R. Corridon, Jovana Paunovic\",\"doi\":\"10.3390/fractalfract7100771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fractal analysis (FA) is a contemporary computational technique that can assist in identifying and assessing nuanced structural alterations in cells and tissues after exposure to certain toxic chemical agents. Its application in toxicology may be particularly valuable for quantifying structural changes in cell nuclei during conventional microscopy assessments. In recent years, the fractal dimension and lacunarity of cell nuclei, considered among the most significant FA features, have been suggested as potentially important indicators of cell damage and death. In this study, we demonstrate the feasibility of developing a random forest machine learning model that employs fractal indicators as input data to identify yeast cells treated with oxidopamine (6-hydroxydopamine, 6-OHDA), a powerful toxin commonly applied in neuroscience research. The model achieves notable classification accuracy and discriminatory power, with an area under the receiver operating characteristics curve of more than 0.8. Moreover, it surpasses alternative decision tree models, such as the gradient-boosting classifier, in differentiating treated cells from their intact counterparts. Despite the methodological challenges associated with fractal analysis and random forest training, this approach offers a promising avenue for the continued exploration of machine learning applications in cellular physiology, pathology, and toxicology.\",\"PeriodicalId\":12435,\"journal\":{\"name\":\"Fractal and Fractional\",\"volume\":\"286 3\",\"pages\":\"0\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractal and Fractional\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fractalfract7100771\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7100771","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Oxidopamine-Induced Nuclear Alterations Quantified Using Advanced Fractal Analysis: Random Forest Machine Learning Approach
Fractal analysis (FA) is a contemporary computational technique that can assist in identifying and assessing nuanced structural alterations in cells and tissues after exposure to certain toxic chemical agents. Its application in toxicology may be particularly valuable for quantifying structural changes in cell nuclei during conventional microscopy assessments. In recent years, the fractal dimension and lacunarity of cell nuclei, considered among the most significant FA features, have been suggested as potentially important indicators of cell damage and death. In this study, we demonstrate the feasibility of developing a random forest machine learning model that employs fractal indicators as input data to identify yeast cells treated with oxidopamine (6-hydroxydopamine, 6-OHDA), a powerful toxin commonly applied in neuroscience research. The model achieves notable classification accuracy and discriminatory power, with an area under the receiver operating characteristics curve of more than 0.8. Moreover, it surpasses alternative decision tree models, such as the gradient-boosting classifier, in differentiating treated cells from their intact counterparts. Despite the methodological challenges associated with fractal analysis and random forest training, this approach offers a promising avenue for the continued exploration of machine learning applications in cellular physiology, pathology, and toxicology.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.