数字孪生烧结系统的在线动态建模:一种迭代更新数据驱动方法

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC IET Signal Processing Pub Date : 2023-10-23 DOI:10.1049/2023/6665657
Xuda Ding, Wei Liu, Jiale Ye, Cailian Chen, Xinping Guan
{"title":"数字孪生烧结系统的在线动态建模:一种迭代更新数据驱动方法","authors":"Xuda Ding, Wei Liu, Jiale Ye, Cailian Chen, Xinping Guan","doi":"10.1049/2023/6665657","DOIUrl":null,"url":null,"abstract":"The sintering process is a crucial thermochemical process in the blast furnace iron-making system. Tumble strength (TS), as a vital performance to assess sinter quality, is difficult to monitor due to the lack of timely measurement. Constructing a data-driven model for TS is an alternative for monitoring TS. However, the time-varying dynamic sintering process makes the task of modelling challenging. And the data are incomplete and insufficient in practice for modelling since there are unknown time delays in the system and lack actual TS value. The digital twin (DT) technique is a powerful tool to simulate the system dynamics with the real-time interaction between physical processes and virtual agents in cyberspace. This paper introduces a DT-enabled equivalent of the sintering system and proposes online data-driven modelling for TS monitoring. The time delay in the system is estimated for variable sequence alignment based on a modified maximum information coefficient method. The data used for modelling is enriched based on a multi-source information fusion technique. An adaptive update method is proposed to deal with the time-varying dynamics. The iterative forgetting factor-based algorithm is designed for the support vector regression method and guarantees a fast computational speed. Implementation and validation of the model on a DT-enabled sintering system show the efficiency of the proposed method. The accuracy of TS monitoring reaches 99.6% by analysis of 3 months’ data.","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Dynamic Modelling for Digital Twin Enabled Sintering Systems: An Iterative Update Data-Driven Method\",\"authors\":\"Xuda Ding, Wei Liu, Jiale Ye, Cailian Chen, Xinping Guan\",\"doi\":\"10.1049/2023/6665657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sintering process is a crucial thermochemical process in the blast furnace iron-making system. Tumble strength (TS), as a vital performance to assess sinter quality, is difficult to monitor due to the lack of timely measurement. Constructing a data-driven model for TS is an alternative for monitoring TS. However, the time-varying dynamic sintering process makes the task of modelling challenging. And the data are incomplete and insufficient in practice for modelling since there are unknown time delays in the system and lack actual TS value. The digital twin (DT) technique is a powerful tool to simulate the system dynamics with the real-time interaction between physical processes and virtual agents in cyberspace. This paper introduces a DT-enabled equivalent of the sintering system and proposes online data-driven modelling for TS monitoring. The time delay in the system is estimated for variable sequence alignment based on a modified maximum information coefficient method. The data used for modelling is enriched based on a multi-source information fusion technique. An adaptive update method is proposed to deal with the time-varying dynamics. The iterative forgetting factor-based algorithm is designed for the support vector regression method and guarantees a fast computational speed. Implementation and validation of the model on a DT-enabled sintering system show the efficiency of the proposed method. The accuracy of TS monitoring reaches 99.6% by analysis of 3 months’ data.\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/6665657\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/6665657","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

烧结过程是高炉炼铁系统中一个至关重要的热化学过程。翻滚强度是衡量烧结矿质量的重要指标,但由于缺乏及时的测量,难以监测。构建数据驱动的TS模型是监测TS的一种替代方法,然而,随时间变化的动态烧结过程使建模任务具有挑战性。由于系统中存在未知的时滞,缺乏实际的TS值,在实际建模中数据不完整,不足。数字孪生(DT)技术是模拟网络空间中物理过程与虚拟主体实时交互的系统动力学的有力工具。本文介绍了一个等效的烧结系统,并提出了用于TS监测的在线数据驱动建模。基于改进的最大信息系数法估计了变序列比对时系统的时延。基于多源信息融合技术丰富了用于建模的数据。针对时变动力学问题,提出了一种自适应更新方法。为支持向量回归方法设计了基于迭代遗忘因子的算法,保证了快速的计算速度。该模型在dt烧结系统上的实现和验证表明了该方法的有效性。通过对3个月数据的分析,TS监测准确率达到99.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Online Dynamic Modelling for Digital Twin Enabled Sintering Systems: An Iterative Update Data-Driven Method
The sintering process is a crucial thermochemical process in the blast furnace iron-making system. Tumble strength (TS), as a vital performance to assess sinter quality, is difficult to monitor due to the lack of timely measurement. Constructing a data-driven model for TS is an alternative for monitoring TS. However, the time-varying dynamic sintering process makes the task of modelling challenging. And the data are incomplete and insufficient in practice for modelling since there are unknown time delays in the system and lack actual TS value. The digital twin (DT) technique is a powerful tool to simulate the system dynamics with the real-time interaction between physical processes and virtual agents in cyberspace. This paper introduces a DT-enabled equivalent of the sintering system and proposes online data-driven modelling for TS monitoring. The time delay in the system is estimated for variable sequence alignment based on a modified maximum information coefficient method. The data used for modelling is enriched based on a multi-source information fusion technique. An adaptive update method is proposed to deal with the time-varying dynamics. The iterative forgetting factor-based algorithm is designed for the support vector regression method and guarantees a fast computational speed. Implementation and validation of the model on a DT-enabled sintering system show the efficiency of the proposed method. The accuracy of TS monitoring reaches 99.6% by analysis of 3 months’ data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Signal Processing
IET Signal Processing 工程技术-工程:电子与电气
CiteScore
3.80
自引率
5.90%
发文量
83
审稿时长
9.5 months
期刊介绍: IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more. Topics covered by scope include, but are not limited to: advances in single and multi-dimensional filter design and implementation linear and nonlinear, fixed and adaptive digital filters and multirate filter banks statistical signal processing techniques and analysis classical, parametric and higher order spectral analysis signal transformation and compression techniques, including time-frequency analysis system modelling and adaptive identification techniques machine learning based approaches to signal processing Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques theory and application of blind and semi-blind signal separation techniques signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals direction-finding and beamforming techniques for audio and electromagnetic signals analysis techniques for biomedical signals baseband signal processing techniques for transmission and reception of communication signals signal processing techniques for data hiding and audio watermarking sparse signal processing and compressive sensing Special Issue Call for Papers: Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf
期刊最新文献
Human-Centered UAV–MAV Teaming in Adversarial Scenarios via Target-Aware Intention Prediction and Reinforcement Learning Att-U2Net: Using Attention to Enhance Semantic Representation for Salient Object Detection Deep Reinforcement Learning Explores EH-RIS for Spectrum-Efficient Drone Communication in 6G An Improved Lightweight YOLO Algorithm for Recognition of GPS Interference Signals in Civil Aviation Support Vector Machines Based Mutual Interference Mitigation for Millimeter-Wave Radars
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1