Xuda Ding, Wei Liu, Jiale Ye, Cailian Chen, Xinping Guan
{"title":"数字孪生烧结系统的在线动态建模:一种迭代更新数据驱动方法","authors":"Xuda Ding, Wei Liu, Jiale Ye, Cailian Chen, Xinping Guan","doi":"10.1049/2023/6665657","DOIUrl":null,"url":null,"abstract":"The sintering process is a crucial thermochemical process in the blast furnace iron-making system. Tumble strength (TS), as a vital performance to assess sinter quality, is difficult to monitor due to the lack of timely measurement. Constructing a data-driven model for TS is an alternative for monitoring TS. However, the time-varying dynamic sintering process makes the task of modelling challenging. And the data are incomplete and insufficient in practice for modelling since there are unknown time delays in the system and lack actual TS value. The digital twin (DT) technique is a powerful tool to simulate the system dynamics with the real-time interaction between physical processes and virtual agents in cyberspace. This paper introduces a DT-enabled equivalent of the sintering system and proposes online data-driven modelling for TS monitoring. The time delay in the system is estimated for variable sequence alignment based on a modified maximum information coefficient method. The data used for modelling is enriched based on a multi-source information fusion technique. An adaptive update method is proposed to deal with the time-varying dynamics. The iterative forgetting factor-based algorithm is designed for the support vector regression method and guarantees a fast computational speed. Implementation and validation of the model on a DT-enabled sintering system show the efficiency of the proposed method. The accuracy of TS monitoring reaches 99.6% by analysis of 3 months’ data.","PeriodicalId":56301,"journal":{"name":"IET Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Dynamic Modelling for Digital Twin Enabled Sintering Systems: An Iterative Update Data-Driven Method\",\"authors\":\"Xuda Ding, Wei Liu, Jiale Ye, Cailian Chen, Xinping Guan\",\"doi\":\"10.1049/2023/6665657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sintering process is a crucial thermochemical process in the blast furnace iron-making system. Tumble strength (TS), as a vital performance to assess sinter quality, is difficult to monitor due to the lack of timely measurement. Constructing a data-driven model for TS is an alternative for monitoring TS. However, the time-varying dynamic sintering process makes the task of modelling challenging. And the data are incomplete and insufficient in practice for modelling since there are unknown time delays in the system and lack actual TS value. The digital twin (DT) technique is a powerful tool to simulate the system dynamics with the real-time interaction between physical processes and virtual agents in cyberspace. This paper introduces a DT-enabled equivalent of the sintering system and proposes online data-driven modelling for TS monitoring. The time delay in the system is estimated for variable sequence alignment based on a modified maximum information coefficient method. The data used for modelling is enriched based on a multi-source information fusion technique. An adaptive update method is proposed to deal with the time-varying dynamics. The iterative forgetting factor-based algorithm is designed for the support vector regression method and guarantees a fast computational speed. Implementation and validation of the model on a DT-enabled sintering system show the efficiency of the proposed method. The accuracy of TS monitoring reaches 99.6% by analysis of 3 months’ data.\",\"PeriodicalId\":56301,\"journal\":{\"name\":\"IET Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1049/2023/6665657\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/2023/6665657","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Online Dynamic Modelling for Digital Twin Enabled Sintering Systems: An Iterative Update Data-Driven Method
The sintering process is a crucial thermochemical process in the blast furnace iron-making system. Tumble strength (TS), as a vital performance to assess sinter quality, is difficult to monitor due to the lack of timely measurement. Constructing a data-driven model for TS is an alternative for monitoring TS. However, the time-varying dynamic sintering process makes the task of modelling challenging. And the data are incomplete and insufficient in practice for modelling since there are unknown time delays in the system and lack actual TS value. The digital twin (DT) technique is a powerful tool to simulate the system dynamics with the real-time interaction between physical processes and virtual agents in cyberspace. This paper introduces a DT-enabled equivalent of the sintering system and proposes online data-driven modelling for TS monitoring. The time delay in the system is estimated for variable sequence alignment based on a modified maximum information coefficient method. The data used for modelling is enriched based on a multi-source information fusion technique. An adaptive update method is proposed to deal with the time-varying dynamics. The iterative forgetting factor-based algorithm is designed for the support vector regression method and guarantees a fast computational speed. Implementation and validation of the model on a DT-enabled sintering system show the efficiency of the proposed method. The accuracy of TS monitoring reaches 99.6% by analysis of 3 months’ data.
期刊介绍:
IET Signal Processing publishes research on a diverse range of signal processing and machine learning topics, covering a variety of applications, disciplines, modalities, and techniques in detection, estimation, inference, and classification problems. The research published includes advances in algorithm design for the analysis of single and high-multi-dimensional data, sparsity, linear and non-linear systems, recursive and non-recursive digital filters and multi-rate filter banks, as well a range of topics that span from sensor array processing, deep convolutional neural network based approaches to the application of chaos theory, and far more.
Topics covered by scope include, but are not limited to:
advances in single and multi-dimensional filter design and implementation
linear and nonlinear, fixed and adaptive digital filters and multirate filter banks
statistical signal processing techniques and analysis
classical, parametric and higher order spectral analysis
signal transformation and compression techniques, including time-frequency analysis
system modelling and adaptive identification techniques
machine learning based approaches to signal processing
Bayesian methods for signal processing, including Monte-Carlo Markov-chain and particle filtering techniques
theory and application of blind and semi-blind signal separation techniques
signal processing techniques for analysis, enhancement, coding, synthesis and recognition of speech signals
direction-finding and beamforming techniques for audio and electromagnetic signals
analysis techniques for biomedical signals
baseband signal processing techniques for transmission and reception of communication signals
signal processing techniques for data hiding and audio watermarking
sparse signal processing and compressive sensing
Special Issue Call for Papers:
Intelligent Deep Fuzzy Model for Signal Processing - https://digital-library.theiet.org/files/IET_SPR_CFP_IDFMSP.pdf