遗产葡萄藤作为植物萎蔫病菌生物防治剂的来源

IF 1.9 3区 农林科学 Q2 AGRONOMY Phytopathologia Mediterranea Pub Date : 2023-05-12 DOI:10.36253/phyto-14154
Carmen Sanjuana DELGADO-RAMÍREZ, Edgardo SEPÚLVEDA, Edelweiss Airam RANGEL-MONTOYA, Cesar VALENZUELA-SOLANO, Rufina HERNANDEZ-MARTINEZ
{"title":"遗产葡萄藤作为植物萎蔫病菌生物防治剂的来源","authors":"Carmen Sanjuana DELGADO-RAMÍREZ, Edgardo SEPÚLVEDA, Edelweiss Airam RANGEL-MONTOYA, Cesar VALENZUELA-SOLANO, Rufina HERNANDEZ-MARTINEZ","doi":"10.36253/phyto-14154","DOIUrl":null,"url":null,"abstract":"Grapevine trunk diseases cause severe damage in grapevines. Management strategies focus on protection of grapevine pruning wounds using chemical fungicides or biological control agents. Botryosphaeria dieback, caused mainly by Lasiodiplodia spp., is one of the main trunk diseases in northwest Mexico. This study obtained endophytic bacteria and fungi from the heritage grapevine Vitis vinifera cv. ‘Mission’ for potential biological control of Botryosphaeria dieback. A collection of 135 bacterial and 37 fungal isolates were obtained and initially tested for antagonistic activity against Lasiodiplodia brasiliensis. The most promising isolates belonging to Trichoderma and Bacillus spp. were selected and characterized to determine their modes of action. Bacillus isolates produced volatile organic compounds that inhibited growth of Neofusicoccum parvum, and diffusible organic compounds with antifungal effects against L. brasiliensis and N. parvum. Trichoderma isolates produced diffusible organic compounds and were mycoparasites. In greenhouse assays, plants inoculated with three Trichoderma asperellum isolates (T20BCMX, EF09BCMX, and EF11BCMX), B. amyloliquefaciens (BEVP26BCMX) or Bacillus sp. (rbES015), applied preventively in soil, gave up to 50% smaller necrotic lesions when compared with the plants inoculated only with L. brasiliensis. In the field, plants inoculated with three Bacillus isolates (BEVP02BCMX, BEVP26BCMX, BEVP31BCMX) or five Trichoderma (T11BCMX, T15BCMX, T17BCMX, T20BCMX, and EF11BCMX) had lesions up to four times smaller than control plants inoculated only with L. brasiliensis. This study has demonstrated the potential of heritage grapevines to provide biological control agents for Botryosphaeria dieback.","PeriodicalId":20165,"journal":{"name":"Phytopathologia Mediterranea","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heritage grapevines as sources of biological control agents for Botryosphaeria dieback pathogens\",\"authors\":\"Carmen Sanjuana DELGADO-RAMÍREZ, Edgardo SEPÚLVEDA, Edelweiss Airam RANGEL-MONTOYA, Cesar VALENZUELA-SOLANO, Rufina HERNANDEZ-MARTINEZ\",\"doi\":\"10.36253/phyto-14154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grapevine trunk diseases cause severe damage in grapevines. Management strategies focus on protection of grapevine pruning wounds using chemical fungicides or biological control agents. Botryosphaeria dieback, caused mainly by Lasiodiplodia spp., is one of the main trunk diseases in northwest Mexico. This study obtained endophytic bacteria and fungi from the heritage grapevine Vitis vinifera cv. ‘Mission’ for potential biological control of Botryosphaeria dieback. A collection of 135 bacterial and 37 fungal isolates were obtained and initially tested for antagonistic activity against Lasiodiplodia brasiliensis. The most promising isolates belonging to Trichoderma and Bacillus spp. were selected and characterized to determine their modes of action. Bacillus isolates produced volatile organic compounds that inhibited growth of Neofusicoccum parvum, and diffusible organic compounds with antifungal effects against L. brasiliensis and N. parvum. Trichoderma isolates produced diffusible organic compounds and were mycoparasites. In greenhouse assays, plants inoculated with three Trichoderma asperellum isolates (T20BCMX, EF09BCMX, and EF11BCMX), B. amyloliquefaciens (BEVP26BCMX) or Bacillus sp. (rbES015), applied preventively in soil, gave up to 50% smaller necrotic lesions when compared with the plants inoculated only with L. brasiliensis. In the field, plants inoculated with three Bacillus isolates (BEVP02BCMX, BEVP26BCMX, BEVP31BCMX) or five Trichoderma (T11BCMX, T15BCMX, T17BCMX, T20BCMX, and EF11BCMX) had lesions up to four times smaller than control plants inoculated only with L. brasiliensis. This study has demonstrated the potential of heritage grapevines to provide biological control agents for Botryosphaeria dieback.\",\"PeriodicalId\":20165,\"journal\":{\"name\":\"Phytopathologia Mediterranea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathologia Mediterranea\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36253/phyto-14154\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathologia Mediterranea","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36253/phyto-14154","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

葡萄藤主干病害对葡萄藤造成严重损害。管理策略侧重于使用化学杀菌剂或生物防治剂保护葡萄藤修剪伤。葡萄萎蔫病(Botryosphaeria dieback)是墨西哥西北地区的主要病害之一,主要由Lasiodiplodia spp.引起。本研究对葡萄的内生细菌和真菌进行了研究。植物萎蔫菌潜在生物防治的“使命”。本文收集了135株细菌和37株真菌分离株,并对其进行了初步的拮抗活性测试。对木霉和芽孢杆菌属最有希望的分离株进行了筛选和鉴定,确定了它们的作用方式。分离的芽孢杆菌产生的挥发性有机物能抑制新褐毛虫的生长,而扩散的有机物能抑制巴西乳杆菌和新褐毛虫的生长。分离木霉产生可扩散的有机化合物,是支寄生虫。在温室试验中,接种三种曲霉木霉分离株(T20BCMX、EF09BCMX和EF11BCMX)、解淀粉芽孢杆菌(BEVP26BCMX)或芽孢杆菌(rbES015)的植株,与只接种巴西芽孢杆菌的植株相比,坏死灶缩小了50%。在田间试验中,接种3株芽孢杆菌(BEVP02BCMX、BEVP26BCMX、BEVP31BCMX)或5株木霉(T11BCMX、T15BCMX、T17BCMX、T20BCMX和EF11BCMX)的植株损伤比只接种巴西乳杆菌的对照植株小4倍。本研究证明了遗产葡萄藤为葡萄萎蔫病提供生物防治剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heritage grapevines as sources of biological control agents for Botryosphaeria dieback pathogens
Grapevine trunk diseases cause severe damage in grapevines. Management strategies focus on protection of grapevine pruning wounds using chemical fungicides or biological control agents. Botryosphaeria dieback, caused mainly by Lasiodiplodia spp., is one of the main trunk diseases in northwest Mexico. This study obtained endophytic bacteria and fungi from the heritage grapevine Vitis vinifera cv. ‘Mission’ for potential biological control of Botryosphaeria dieback. A collection of 135 bacterial and 37 fungal isolates were obtained and initially tested for antagonistic activity against Lasiodiplodia brasiliensis. The most promising isolates belonging to Trichoderma and Bacillus spp. were selected and characterized to determine their modes of action. Bacillus isolates produced volatile organic compounds that inhibited growth of Neofusicoccum parvum, and diffusible organic compounds with antifungal effects against L. brasiliensis and N. parvum. Trichoderma isolates produced diffusible organic compounds and were mycoparasites. In greenhouse assays, plants inoculated with three Trichoderma asperellum isolates (T20BCMX, EF09BCMX, and EF11BCMX), B. amyloliquefaciens (BEVP26BCMX) or Bacillus sp. (rbES015), applied preventively in soil, gave up to 50% smaller necrotic lesions when compared with the plants inoculated only with L. brasiliensis. In the field, plants inoculated with three Bacillus isolates (BEVP02BCMX, BEVP26BCMX, BEVP31BCMX) or five Trichoderma (T11BCMX, T15BCMX, T17BCMX, T20BCMX, and EF11BCMX) had lesions up to four times smaller than control plants inoculated only with L. brasiliensis. This study has demonstrated the potential of heritage grapevines to provide biological control agents for Botryosphaeria dieback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Phytopathologia Mediterranea
Phytopathologia Mediterranea 生物-植物科学
CiteScore
4.40
自引率
8.30%
发文量
28
审稿时长
6-12 weeks
期刊介绍: Phytopathologia Mediterranea is an international journal edited by the Mediterranean Phytopathological Union. The journal’s mission is the promotion of plant health for Mediterranean crops, climate and regions, safe food production, and the transfer of new knowledge on plant diseases and their sustainable management. The journal deals with all areas of plant pathology, including etiology, epidemiology, disease control, biochemical and physiological aspects, and utilization of molecular technologies. All types of plant pathogens are covered, including fungi, oomycetes, nematodes, protozoa, bacteria, phytoplasmas, viruses, and viroids. The journal also gives a special attention to research on mycotoxins, biological and integrated management of plant diseases, and the use of natural substances in disease and weed control. The journal focuses on pathology of Mediterranean crops grown throughout the world. The Editorial Board of Phytopathologia Mediterranea has recently been reorganised, under two Editors-in-Chief and with an increased number of editors.
期刊最新文献
Enhancing epidemiological knowledge of Botryosphaeriaceae in Mexican vineyards Genetic variability of grapevine Pinot gris virus (GPGV) in an organically cultivated vineyard in Hungary Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 in banana plantations in Türkiye Diversity of Colletotrichum species on strawberry (Fragaria × ananassa) in Germany Evaluation of fungicides for management of Botryosphaeriaceae associated with dieback in Australian walnut orchards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1