Rapidrift:改进基于机器学习的恶意软件检测的基本技术

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers Pub Date : 2023-09-28 DOI:10.3390/computers12100195
Abishek Manikandaraja, Peter Aaby, Nikolaos Pitropakis
{"title":"Rapidrift:改进基于机器学习的恶意软件检测的基本技术","authors":"Abishek Manikandaraja, Peter Aaby, Nikolaos Pitropakis","doi":"10.3390/computers12100195","DOIUrl":null,"url":null,"abstract":"Artificial intelligence and machine learning have become a necessary part of modern living along with the increased adoption of new computational devices. Because machine learning and artificial intelligence can detect malware better than traditional signature detection, the development of new and novel malware aiming to bypass detection has caused a challenge where models may experience concept drift. However, as new malware samples appear, the detection performance drops. Our work aims to discuss the performance degradation of machine learning-based malware detectors with time, also called concept drift. To achieve this goal, we develop a Python-based framework, namely Rapidrift, capable of analysing the concept drift at a more granular level. We also created two new malware datasets, TRITIUM and INFRENO, from different sources and threat profiles to conduct a deeper analysis of the concept drift problem. To test the effectiveness of Rapidrift, various fundamental methods that could reduce the effects of concept drift were experimentally explored.","PeriodicalId":46292,"journal":{"name":"Computers","volume":"23 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapidrift: Elementary Techniques to Improve Machine Learning-Based Malware Detection\",\"authors\":\"Abishek Manikandaraja, Peter Aaby, Nikolaos Pitropakis\",\"doi\":\"10.3390/computers12100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence and machine learning have become a necessary part of modern living along with the increased adoption of new computational devices. Because machine learning and artificial intelligence can detect malware better than traditional signature detection, the development of new and novel malware aiming to bypass detection has caused a challenge where models may experience concept drift. However, as new malware samples appear, the detection performance drops. Our work aims to discuss the performance degradation of machine learning-based malware detectors with time, also called concept drift. To achieve this goal, we develop a Python-based framework, namely Rapidrift, capable of analysing the concept drift at a more granular level. We also created two new malware datasets, TRITIUM and INFRENO, from different sources and threat profiles to conduct a deeper analysis of the concept drift problem. To test the effectiveness of Rapidrift, various fundamental methods that could reduce the effects of concept drift were experimentally explored.\",\"PeriodicalId\":46292,\"journal\":{\"name\":\"Computers\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/computers12100195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12100195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着新型计算设备的日益普及,人工智能和机器学习已经成为现代生活的必要组成部分。由于机器学习和人工智能可以比传统的签名检测更好地检测恶意软件,旨在绕过检测的新型恶意软件的开发给模型带来了概念漂移的挑战。然而,随着新的恶意软件样本的出现,检测性能下降。我们的工作旨在讨论基于机器学习的恶意软件检测器的性能随时间的退化,也称为概念漂移。为了实现这一目标,我们开发了一个基于python的框架,即Rapidrift,能够在更细粒度的层面上分析概念漂移。我们还创建了两个新的恶意软件数据集,TRITIUM和INFRENO,来自不同的来源和威胁配置文件,以对概念漂移问题进行更深入的分析。为了验证Rapidrift的有效性,实验探索了各种可以减少概念漂移影响的基本方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapidrift: Elementary Techniques to Improve Machine Learning-Based Malware Detection
Artificial intelligence and machine learning have become a necessary part of modern living along with the increased adoption of new computational devices. Because machine learning and artificial intelligence can detect malware better than traditional signature detection, the development of new and novel malware aiming to bypass detection has caused a challenge where models may experience concept drift. However, as new malware samples appear, the detection performance drops. Our work aims to discuss the performance degradation of machine learning-based malware detectors with time, also called concept drift. To achieve this goal, we develop a Python-based framework, namely Rapidrift, capable of analysing the concept drift at a more granular level. We also created two new malware datasets, TRITIUM and INFRENO, from different sources and threat profiles to conduct a deeper analysis of the concept drift problem. To test the effectiveness of Rapidrift, various fundamental methods that could reduce the effects of concept drift were experimentally explored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers
Computers COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
5.40
自引率
3.60%
发文量
153
审稿时长
11 weeks
期刊最新文献
Advanced Road Safety: Collective Perception for Probability of Collision Estimation of Connected Vehicles Forecasting of Bitcoin Illiquidity Using High-Dimensional and Textual Features Mining Negative Associations from Medical Databases Considering Frequent, Regular, Closed and Maximal Patterns Faraway, so Close: Perceptions of the Metaverse on the Edge of Madness Blockchain-Powered Gaming: Bridging Entertainment with Serious Game Objectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1