为可持续农业应用设计纳米颗粒

IF 14 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Trends in Chemistry Pub Date : 2023-09-01 DOI:10.1016/j.trechm.2023.07.004
Beza Tuga, Tana O’Keefe, Chaoyi Deng, Andrea T. Ligocki, Jason C. White, Christy L. Haynes
{"title":"为可持续农业应用设计纳米颗粒","authors":"Beza Tuga, Tana O’Keefe, Chaoyi Deng, Andrea T. Ligocki, Jason C. White, Christy L. Haynes","doi":"10.1016/j.trechm.2023.07.004","DOIUrl":null,"url":null,"abstract":"Progress toward achieving global food security continues to be hindered by several economic, geo-political, and environmental variables which has led the United Nations to place emphasis on achieving Zero Hunger by 2030. Thus, it is important to invest in novel, eco-friendly, and cost-effective solutions that will increase agricultural productivity. For this reason, nanoscale materials are increasingly being developed for use in agriculture with attention on controlling various properties such as size, shape, surface modifications, and transformations for improved impact in plants. With continued interdisciplinary and collaborative efforts among nanoparticle experts and plant scientists, the research area will evolve to identify the best nanoparticle properties for foliar application to plants.","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing nanoparticles for sustainable agricultural applications\",\"authors\":\"Beza Tuga, Tana O’Keefe, Chaoyi Deng, Andrea T. Ligocki, Jason C. White, Christy L. Haynes\",\"doi\":\"10.1016/j.trechm.2023.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Progress toward achieving global food security continues to be hindered by several economic, geo-political, and environmental variables which has led the United Nations to place emphasis on achieving Zero Hunger by 2030. Thus, it is important to invest in novel, eco-friendly, and cost-effective solutions that will increase agricultural productivity. For this reason, nanoscale materials are increasingly being developed for use in agriculture with attention on controlling various properties such as size, shape, surface modifications, and transformations for improved impact in plants. With continued interdisciplinary and collaborative efforts among nanoparticle experts and plant scientists, the research area will evolve to identify the best nanoparticle properties for foliar application to plants.\",\"PeriodicalId\":48544,\"journal\":{\"name\":\"Trends in Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.trechm.2023.07.004\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.trechm.2023.07.004","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

实现全球粮食安全的进展继续受到一些经济、地缘政治和环境变量的阻碍,这使得联合国将重点放在到2030年实现零饥饿上。因此,重要的是投资于新颖、环保和具有成本效益的解决方案,以提高农业生产率。由于这个原因,纳米材料越来越多地被开发用于农业,重点是控制各种特性,如大小、形状、表面修饰和转化,以提高对植物的影响。随着纳米颗粒专家和植物科学家之间持续的跨学科和合作努力,研究领域将发展到确定最佳的纳米颗粒特性,用于植物的叶面应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing nanoparticles for sustainable agricultural applications
Progress toward achieving global food security continues to be hindered by several economic, geo-political, and environmental variables which has led the United Nations to place emphasis on achieving Zero Hunger by 2030. Thus, it is important to invest in novel, eco-friendly, and cost-effective solutions that will increase agricultural productivity. For this reason, nanoscale materials are increasingly being developed for use in agriculture with attention on controlling various properties such as size, shape, surface modifications, and transformations for improved impact in plants. With continued interdisciplinary and collaborative efforts among nanoparticle experts and plant scientists, the research area will evolve to identify the best nanoparticle properties for foliar application to plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Chemistry
Trends in Chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
28.00
自引率
0.60%
发文量
138
期刊介绍: Trends in Chemistry serves as a new global platform for discussing significant and transformative concepts across all areas of chemistry. It recognizes that breakthroughs in chemistry hold the key to addressing major global challenges. The journal offers readable, multidisciplinary articles, including reviews, opinions, and short pieces, designed to keep both students and leading scientists updated on pressing issues in the field. Covering analytical, inorganic, organic, physical, and theoretical chemistry, the journal highlights major themes such as biochemistry, catalysis, environmental chemistry, materials, medicine, polymers, and supramolecular chemistry. It also welcomes articles on chemical education, health and safety, policy and public relations, and ethics and law.
期刊最新文献
Enantiospecific 1,3-hydrogen transfer of alkenes and alkynes Subscription and Copyright Information Advisory Board and Contents Cholesterol-mediated functionalization of liposomes for artificial cell design ChemCarnival: inspiring future STEM pioneers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1