基于机器学习的塔马努籽油生物柴油提取设备设计

Achri Isnan Khamil, Eko Saputra Widarianto, Anandya Zulham Valensyah, Maktum Muharja, Rizki Fitria Darmayanti, Riza Umami, Khofifah Shinta Mamnukha, M Zikrillah
{"title":"基于机器学习的塔马努籽油生物柴油提取设备设计","authors":"Achri Isnan Khamil, Eko Saputra Widarianto, Anandya Zulham Valensyah, Maktum Muharja, Rizki Fitria Darmayanti, Riza Umami, Khofifah Shinta Mamnukha, M Zikrillah","doi":"10.32528/nms.v2i3.278","DOIUrl":null,"url":null,"abstract":"Tamanu oil is one of the sources of vegetable oil needed on an industrial scale, so it is widely developed for its production. In designing essential oil processing on an in-dustrial scale requires mathematical calculations in measuring parameters in the re-actor, where this requires quite a long time in manual calculations. Utilization of ar-tificial intelligence technology, especially Machine Learning, That is very useful in the calculation process in the Tamanu oil extraction reactor. Machine Learning method used in this research is linear regression for data prediction and mean absolute error is used to measure absolute error. The model is used to predict the results of the outer diameter of the connecting pipe between tools with the parameters used, namely the target output in tons per year from cooking oil products made from tamanu seeds. R2 value of the graph of the CCIO Training Nominal Size data; Cooking oil; Methanol; Petroleum Ether is close to a value of 1, which means that the Input Feed value required to achieve the desired Output is close to 100% accuracy. Meanwhile, the Mean Absolute Error (MAE) value is the result of determining the Nominal Size with the Output value = 5000; 55000; and 150000 kg/hour shows a small difference in error values so that the design is acceptable.","PeriodicalId":104869,"journal":{"name":"National Multidisciplinary Sciences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning Approach to Design of Biodiesel Production Extraction Equipment from Tamanu Seed Oil\",\"authors\":\"Achri Isnan Khamil, Eko Saputra Widarianto, Anandya Zulham Valensyah, Maktum Muharja, Rizki Fitria Darmayanti, Riza Umami, Khofifah Shinta Mamnukha, M Zikrillah\",\"doi\":\"10.32528/nms.v2i3.278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tamanu oil is one of the sources of vegetable oil needed on an industrial scale, so it is widely developed for its production. In designing essential oil processing on an in-dustrial scale requires mathematical calculations in measuring parameters in the re-actor, where this requires quite a long time in manual calculations. Utilization of ar-tificial intelligence technology, especially Machine Learning, That is very useful in the calculation process in the Tamanu oil extraction reactor. Machine Learning method used in this research is linear regression for data prediction and mean absolute error is used to measure absolute error. The model is used to predict the results of the outer diameter of the connecting pipe between tools with the parameters used, namely the target output in tons per year from cooking oil products made from tamanu seeds. R2 value of the graph of the CCIO Training Nominal Size data; Cooking oil; Methanol; Petroleum Ether is close to a value of 1, which means that the Input Feed value required to achieve the desired Output is close to 100% accuracy. Meanwhile, the Mean Absolute Error (MAE) value is the result of determining the Nominal Size with the Output value = 5000; 55000; and 150000 kg/hour shows a small difference in error values so that the design is acceptable.\",\"PeriodicalId\":104869,\"journal\":{\"name\":\"National Multidisciplinary Sciences\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Multidisciplinary Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32528/nms.v2i3.278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Multidisciplinary Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32528/nms.v2i3.278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

塔马努油是工业规模所需的植物油来源之一,因此被广泛开发用于其生产。在设计工业规模的精油处理过程时,需要在反应器中测量参数时进行数学计算,这需要相当长的人工计算时间。利用人工智能技术,特别是机器学习,这在塔马努采油反应器的计算过程中非常有用。本研究中使用的机器学习方法是线性回归进行数据预测,使用平均绝对误差来度量绝对误差。该模型利用所使用的参数来预测工具间连接管外径的结果,即以吨为单位每年从塔玛努籽中生产食用油产品的目标产量。CCIO培训标称规模数据图的R2值;食用油;甲醇;石油醚的值接近于1,这意味着实现所需输出所需的输入馈送值接近100%的精度。同时,平均绝对误差(MAE)值是确定输出值为5000的标称尺寸的结果;55000;15万公斤/小时的误差值相差不大,因此设计是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning Approach to Design of Biodiesel Production Extraction Equipment from Tamanu Seed Oil
Tamanu oil is one of the sources of vegetable oil needed on an industrial scale, so it is widely developed for its production. In designing essential oil processing on an in-dustrial scale requires mathematical calculations in measuring parameters in the re-actor, where this requires quite a long time in manual calculations. Utilization of ar-tificial intelligence technology, especially Machine Learning, That is very useful in the calculation process in the Tamanu oil extraction reactor. Machine Learning method used in this research is linear regression for data prediction and mean absolute error is used to measure absolute error. The model is used to predict the results of the outer diameter of the connecting pipe between tools with the parameters used, namely the target output in tons per year from cooking oil products made from tamanu seeds. R2 value of the graph of the CCIO Training Nominal Size data; Cooking oil; Methanol; Petroleum Ether is close to a value of 1, which means that the Input Feed value required to achieve the desired Output is close to 100% accuracy. Meanwhile, the Mean Absolute Error (MAE) value is the result of determining the Nominal Size with the Output value = 5000; 55000; and 150000 kg/hour shows a small difference in error values so that the design is acceptable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kebijakan Pengurusan NIB Pasca Berlakunya UU Cipta Kerja Pengelolaan Limbah Domestik Berdasarkan Perda Nomor 6 Tahun 2018 Di Kabupaten Lumajang Pasca Berlakunya UU Cipta Kerja Kepastian Hukum Tentang Kesejahteraan Tenaga Kerja Dalam Perspektif Undang-Undang Cipta Kerja Kebijakan Pengelolaan Keuangan Pajak Daerah Pasca Berklakunya UU Cipta Kerja Di Kabupaten Jember Kebijakan Pemkab Jember Dalam Penanggulangan Hasil Tangkap Ikan Berdasarkan Perda Nomor 9 Tahun 2015 VS UU Cipta Kerja
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1