保留长纤维的pek基热塑性复合材料的报废及其用于压缩成型回收部件的用途

IF 1.4 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY AIMS Materials Science Pub Date : 2023-01-01 DOI:10.3934/matersci.2023044
Alejandro Sandá, Rocío Ruiz, Miguel Ángel Mafé, Jon Ander Sarasua, Antonio González-Jiménez
{"title":"保留长纤维的pek基热塑性复合材料的报废及其用于压缩成型回收部件的用途","authors":"Alejandro Sandá, Rocío Ruiz, Miguel Ángel Mafé, Jon Ander Sarasua, Antonio González-Jiménez","doi":"10.3934/matersci.2023044","DOIUrl":null,"url":null,"abstract":"<abstract> <p>In this work, a novel method for a more sustainable recycling and cost-efficient manufacturing technique of polyether ketone ketone (PEKK) based thermoplastic composite materials is proposed to recover and reprocess waste and end-of-life materials in the aerospace industry. For the recycling of carbon fiber reinforced thermoplastics (CFrTP), an innovative scrapping process based on mechanical cutting was developed and the properties of the obtained scrap and the recycled panel were analyzed. Thus, a cutting tool was developed for the delamination of the input material so that long fibers can be retained in the resulting scrap. Different processing approaches of material scrapping were evaluated, aiming to obtain manageable scrap that can be subsequently used for a compression molding process. Additionally, an automatic process was evaluated to manage the scrap and perform the corresponding lay-up to manufacture high-quality thermoplastic composite products with recycled materials.</p> </abstract>","PeriodicalId":7670,"journal":{"name":"AIMS Materials Science","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scrapping of PEKK-based thermoplastic composites retaining long fibers and their use for compression molded recycled parts\",\"authors\":\"Alejandro Sandá, Rocío Ruiz, Miguel Ángel Mafé, Jon Ander Sarasua, Antonio González-Jiménez\",\"doi\":\"10.3934/matersci.2023044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract> <p>In this work, a novel method for a more sustainable recycling and cost-efficient manufacturing technique of polyether ketone ketone (PEKK) based thermoplastic composite materials is proposed to recover and reprocess waste and end-of-life materials in the aerospace industry. For the recycling of carbon fiber reinforced thermoplastics (CFrTP), an innovative scrapping process based on mechanical cutting was developed and the properties of the obtained scrap and the recycled panel were analyzed. Thus, a cutting tool was developed for the delamination of the input material so that long fibers can be retained in the resulting scrap. Different processing approaches of material scrapping were evaluated, aiming to obtain manageable scrap that can be subsequently used for a compression molding process. Additionally, an automatic process was evaluated to manage the scrap and perform the corresponding lay-up to manufacture high-quality thermoplastic composite products with recycled materials.</p> </abstract>\",\"PeriodicalId\":7670,\"journal\":{\"name\":\"AIMS Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/matersci.2023044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/matersci.2023044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

& lt; abstract>在这项工作中,提出了一种更可持续回收和更具成本效益的聚醚酮酮(PEKK)基热塑性复合材料制造技术的新方法,用于回收和再加工航空航天工业中的废物和报废材料。针对碳纤维增强热塑性塑料(CFrTP)的回收利用,开发了一种基于机械切割的新型报废工艺,并对所获得的废料和回收板材的性能进行了分析。因此,开发了一种用于输入材料分层的切割工具,以便在产生的废料中保留长纤维。评估了材料报废的不同处理方法,旨在获得可管理的废料,随后可用于压缩成型工艺。此外,还评估了一个自动化过程,以管理废料并执行相应的铺层,从而用回收材料生产高质量的热塑性复合材料产品。& lt; / abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scrapping of PEKK-based thermoplastic composites retaining long fibers and their use for compression molded recycled parts

In this work, a novel method for a more sustainable recycling and cost-efficient manufacturing technique of polyether ketone ketone (PEKK) based thermoplastic composite materials is proposed to recover and reprocess waste and end-of-life materials in the aerospace industry. For the recycling of carbon fiber reinforced thermoplastics (CFrTP), an innovative scrapping process based on mechanical cutting was developed and the properties of the obtained scrap and the recycled panel were analyzed. Thus, a cutting tool was developed for the delamination of the input material so that long fibers can be retained in the resulting scrap. Different processing approaches of material scrapping were evaluated, aiming to obtain manageable scrap that can be subsequently used for a compression molding process. Additionally, an automatic process was evaluated to manage the scrap and perform the corresponding lay-up to manufacture high-quality thermoplastic composite products with recycled materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Materials Science
AIMS Materials Science MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
3.60
自引率
0.00%
发文量
33
审稿时长
4 weeks
期刊介绍: AIMS Materials Science welcomes, but not limited to, the papers from the following topics: · Biological materials · Ceramics · Composite materials · Magnetic materials · Medical implant materials · New properties of materials · Nanoscience and nanotechnology · Polymers · Thin films.
期刊最新文献
Effect of sub-zero treatments on hardness and corrosion properties of low-alloy nickel steel Self-healing properties of augmented injectable hydrogels over time Analysis of the folding behavior of a paperboard subjected to indentation of a deviated creasing rule using the finite element method Characterization of the mechanical properties and thermal conductivity of epoxy-silica functionally graded materials Demonstration of ferroelectricity in PLD grown HfO2-ZrO2 nanolaminates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1