海洋菌株芽孢杆菌sp. 051的蛋白质降解活性

Q4 Biochemistry, Genetics and Molecular Biology Mikrobiolohichnyi zhurnal Pub Date : 2023-10-23 DOI:10.15407/microbiolj85.05.012
O.V. Gudzenko, V.O. Ivanytsia, L.D. Varbanets
{"title":"海洋菌株芽孢杆菌sp. 051的蛋白质降解活性","authors":"O.V. Gudzenko, V.O. Ivanytsia, L.D. Varbanets","doi":"10.15407/microbiolj85.05.012","DOIUrl":null,"url":null,"abstract":"The main interest in the study of marine microorganisms is due to their ability to produce a wide range of unique enzymes, including peptidases with different specificities. In recent years, interest has increased in peptidases that are able to cleave elastin as a specific substrate. Streptomyces fradiae and Bacillus thermoproteolyticus elastases are among the most potent elastolytic proteinases discovered to date because they are 4-8-fold more effective than pancreatic elastases. The disadvantages of these producers include the fact that most of them are pathogenic for humans, and the elastase enzyme secreted from them is directly involved in the initiation of the pathogenetic process. All this significantly limits the scope of their practical application. Therefore, the search for new, more effective, safe for humans’ producers continues to be an urgent question, taking into account the fact that there are no highly active elastase producers in Ukraine. Previously we found elastase activity in only 4 of the 10 studied isolates of bacteria from the Black Sea. Since among them, the elastase activity of the Bacillus sp. 051 was the highest, the aim of this work was to study the physicochemical properties and substrate specificity of the enzyme. Methods. We used methods of determining proteolytic (caseinolytic, elastolytic, fibrinolytic, fibrinogenolytic) activity. Protein concentration was determined by the Lowry method. The study of the effect of temperature on the enzymatic activity was carried out in the range from 4 to 70 °C and pH values from 2.0 to 12.0, created using 0.01 M phosphate-citrate buffer. Results. It has been shown that the growing temperature of 12°C is the most optimal for biosynthesis of enzyme by the culture of Bacillus sp. 051. The complex enzyme preparation capable of hydrolyzing elastin, casein and fibrinogen. The enzyme showed maximum activity in relation to elastin (3.65 U/mg). The optimum pH of the enzyme action is 8.0, the thermal optimum is 40°C. The rate of casein hydrolysis compared to elastin was 2.7 times lower and amounted to 1.35 U/mg. The complex enzyme preparation also hydrolyzed fibrinogen (1.16 U/mg). Conclusions. According to its physicochemical and catalytic properties, the representative of the Black Sea, Bacillus sp. 051 is promising for further research as an enzyme producer with elastolytic activity.","PeriodicalId":18628,"journal":{"name":"Mikrobiolohichnyi zhurnal","volume":"28 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteolitic Activity of Marine Strain Bacillus sp. 051\",\"authors\":\"O.V. Gudzenko, V.O. Ivanytsia, L.D. Varbanets\",\"doi\":\"10.15407/microbiolj85.05.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main interest in the study of marine microorganisms is due to their ability to produce a wide range of unique enzymes, including peptidases with different specificities. In recent years, interest has increased in peptidases that are able to cleave elastin as a specific substrate. Streptomyces fradiae and Bacillus thermoproteolyticus elastases are among the most potent elastolytic proteinases discovered to date because they are 4-8-fold more effective than pancreatic elastases. The disadvantages of these producers include the fact that most of them are pathogenic for humans, and the elastase enzyme secreted from them is directly involved in the initiation of the pathogenetic process. All this significantly limits the scope of their practical application. Therefore, the search for new, more effective, safe for humans’ producers continues to be an urgent question, taking into account the fact that there are no highly active elastase producers in Ukraine. Previously we found elastase activity in only 4 of the 10 studied isolates of bacteria from the Black Sea. Since among them, the elastase activity of the Bacillus sp. 051 was the highest, the aim of this work was to study the physicochemical properties and substrate specificity of the enzyme. Methods. We used methods of determining proteolytic (caseinolytic, elastolytic, fibrinolytic, fibrinogenolytic) activity. Protein concentration was determined by the Lowry method. The study of the effect of temperature on the enzymatic activity was carried out in the range from 4 to 70 °C and pH values from 2.0 to 12.0, created using 0.01 M phosphate-citrate buffer. Results. It has been shown that the growing temperature of 12°C is the most optimal for biosynthesis of enzyme by the culture of Bacillus sp. 051. The complex enzyme preparation capable of hydrolyzing elastin, casein and fibrinogen. The enzyme showed maximum activity in relation to elastin (3.65 U/mg). The optimum pH of the enzyme action is 8.0, the thermal optimum is 40°C. The rate of casein hydrolysis compared to elastin was 2.7 times lower and amounted to 1.35 U/mg. The complex enzyme preparation also hydrolyzed fibrinogen (1.16 U/mg). Conclusions. According to its physicochemical and catalytic properties, the representative of the Black Sea, Bacillus sp. 051 is promising for further research as an enzyme producer with elastolytic activity.\",\"PeriodicalId\":18628,\"journal\":{\"name\":\"Mikrobiolohichnyi zhurnal\",\"volume\":\"28 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mikrobiolohichnyi zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/microbiolj85.05.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mikrobiolohichnyi zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/microbiolj85.05.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

研究海洋微生物的主要兴趣是由于它们能够产生一系列独特的酶,包括具有不同特异性的肽酶。近年来,人们对能够裂解弹性蛋白作为特定底物的肽酶越来越感兴趣。传统链霉菌和热溶蛋白芽孢杆菌弹性酶是迄今为止发现的最有效的弹性蛋白酶,因为它们比胰腺弹性酶有效4-8倍。这些生产者的缺点包括大多数对人类具有致病性,并且从它们分泌的弹性酶直接参与发病过程的启动。所有这些都极大地限制了它们的实际应用范围。因此,考虑到乌克兰没有高度活跃的弹性蛋白酶生产商这一事实,寻找新的、更有效的、对人类安全的生产者仍然是一个紧迫的问题。在此之前,我们在10个研究过的黑海细菌分离株中只发现了4个有弹性蛋白酶活性。其中,芽孢杆菌051的弹性酶活性最高,因此本研究的目的是研究该酶的理化性质和底物特异性。方法。我们采用测定蛋白溶解(酪蛋白溶解、弹性溶解、纤维蛋白溶解、纤维蛋白原溶解)活性的方法。用Lowry法测定蛋白浓度。温度对酶活性的影响研究在4 ~ 70℃范围内进行,pH值在2.0 ~ 12.0范围内进行,使用0.01 M磷酸柠檬酸缓冲液。结果。结果表明,芽孢杆菌051的最佳生长温度为12℃。能水解弹性蛋白、酪蛋白和纤维蛋白原的复合酶制剂。该酶对弹性蛋白的活性最高,为3.65 U/mg。酶作用的最适pH为8.0,热最适温度为40℃。酪蛋白的水解率为1.35 U/mg,比弹性蛋白低2.7倍。复合酶制剂还能水解纤维蛋白原(1.16 U/mg)。结论。根据其理化性质和催化性能,黑海代表芽孢杆菌051作为一种具有弹性裂解活性的酶产生物具有进一步的研究前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proteolitic Activity of Marine Strain Bacillus sp. 051
The main interest in the study of marine microorganisms is due to their ability to produce a wide range of unique enzymes, including peptidases with different specificities. In recent years, interest has increased in peptidases that are able to cleave elastin as a specific substrate. Streptomyces fradiae and Bacillus thermoproteolyticus elastases are among the most potent elastolytic proteinases discovered to date because they are 4-8-fold more effective than pancreatic elastases. The disadvantages of these producers include the fact that most of them are pathogenic for humans, and the elastase enzyme secreted from them is directly involved in the initiation of the pathogenetic process. All this significantly limits the scope of their practical application. Therefore, the search for new, more effective, safe for humans’ producers continues to be an urgent question, taking into account the fact that there are no highly active elastase producers in Ukraine. Previously we found elastase activity in only 4 of the 10 studied isolates of bacteria from the Black Sea. Since among them, the elastase activity of the Bacillus sp. 051 was the highest, the aim of this work was to study the physicochemical properties and substrate specificity of the enzyme. Methods. We used methods of determining proteolytic (caseinolytic, elastolytic, fibrinolytic, fibrinogenolytic) activity. Protein concentration was determined by the Lowry method. The study of the effect of temperature on the enzymatic activity was carried out in the range from 4 to 70 °C and pH values from 2.0 to 12.0, created using 0.01 M phosphate-citrate buffer. Results. It has been shown that the growing temperature of 12°C is the most optimal for biosynthesis of enzyme by the culture of Bacillus sp. 051. The complex enzyme preparation capable of hydrolyzing elastin, casein and fibrinogen. The enzyme showed maximum activity in relation to elastin (3.65 U/mg). The optimum pH of the enzyme action is 8.0, the thermal optimum is 40°C. The rate of casein hydrolysis compared to elastin was 2.7 times lower and amounted to 1.35 U/mg. The complex enzyme preparation also hydrolyzed fibrinogen (1.16 U/mg). Conclusions. According to its physicochemical and catalytic properties, the representative of the Black Sea, Bacillus sp. 051 is promising for further research as an enzyme producer with elastolytic activity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mikrobiolohichnyi zhurnal
Mikrobiolohichnyi zhurnal Medicine-Microbiology (medical)
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
Гуанідінійвмісний олігомер як інгібітор мікробної корозії металу Xanthomonas fuscans subsp. fuscans — a Pathogen of Small Brown Spot of Legumes Роль бактерій як основи пелагічних харчових ланцюгів в ультраоліготрофних північних патагонських озерах: міні-огляд Phenotypic and Genotypic Criteria for the Screening of Highly Active S-Type Pyocins Pseudomonas aeruginosa Producers Характеристика генів інтегронів клінічних ізолятів Pseudomonas aeruginosa, які реалізують резистентність до антибіотиків та біоплівкоутворення цими штамами
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1