Mamdouh M. Gomaa, Alaa Elnashar, Mahmoud M. Eelsherif, Alaa M. Zaki
{"title":"基于卷积神经网络的人脸检测模型","authors":"Mamdouh M. Gomaa, Alaa Elnashar, Mahmoud M. Eelsherif, Alaa M. Zaki","doi":"10.5121/mlaij.2023.10303","DOIUrl":null,"url":null,"abstract":"In current times, after the rapid expansion and spread of the COVID-19 outbreak globally, people have experienced severe disruption to their daily lives. One idea to manage the out-break is to enforce people wear a face mask in public places. Therefore, automated and efficient face detection methods are essential for such enforcement. In this paper, a face mask detection model for images has been presented which classifies the images as “with mask” and “without mask”. The model is trained and evaluated using the three datasets Real-World Masked Face Dataset (RMFD), Simulated Masked Face Dataset (SMFD), and Labeled Faces in the Wild (LFW), and attained a performance accuracy rate of 99.72% for first dataset, and 100% for the second and third datasets. This work can be utilized as a digitized scanning tool in schools, hospitals, banks, and airports, and many other public or commercial locations.","PeriodicalId":74528,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face Mask Detection Model Using Convolutional Neural Network\",\"authors\":\"Mamdouh M. Gomaa, Alaa Elnashar, Mahmoud M. Eelsherif, Alaa M. Zaki\",\"doi\":\"10.5121/mlaij.2023.10303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In current times, after the rapid expansion and spread of the COVID-19 outbreak globally, people have experienced severe disruption to their daily lives. One idea to manage the out-break is to enforce people wear a face mask in public places. Therefore, automated and efficient face detection methods are essential for such enforcement. In this paper, a face mask detection model for images has been presented which classifies the images as “with mask” and “without mask”. The model is trained and evaluated using the three datasets Real-World Masked Face Dataset (RMFD), Simulated Masked Face Dataset (SMFD), and Labeled Faces in the Wild (LFW), and attained a performance accuracy rate of 99.72% for first dataset, and 100% for the second and third datasets. This work can be utilized as a digitized scanning tool in schools, hospitals, banks, and airports, and many other public or commercial locations.\",\"PeriodicalId\":74528,\"journal\":{\"name\":\"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/mlaij.2023.10303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning and Applications. International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/mlaij.2023.10303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Face Mask Detection Model Using Convolutional Neural Network
In current times, after the rapid expansion and spread of the COVID-19 outbreak globally, people have experienced severe disruption to their daily lives. One idea to manage the out-break is to enforce people wear a face mask in public places. Therefore, automated and efficient face detection methods are essential for such enforcement. In this paper, a face mask detection model for images has been presented which classifies the images as “with mask” and “without mask”. The model is trained and evaluated using the three datasets Real-World Masked Face Dataset (RMFD), Simulated Masked Face Dataset (SMFD), and Labeled Faces in the Wild (LFW), and attained a performance accuracy rate of 99.72% for first dataset, and 100% for the second and third datasets. This work can be utilized as a digitized scanning tool in schools, hospitals, banks, and airports, and many other public or commercial locations.