Peng Xiao, Ni Li, Feng Xie, Haihong Ni, Min Zhang, Ban Wang
{"title":"基于聚类的异构无人机多区域覆盖路径规划","authors":"Peng Xiao, Ni Li, Feng Xie, Haihong Ni, Min Zhang, Ban Wang","doi":"10.3390/drones7110664","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) multi-area coverage-path planning has a broad range of applications in agricultural mapping and military reconnaissance. Compared to homogeneous UAVs, heterogeneous UAVs have higher application value due to their superior flexibility and efficiency. Nevertheless, variations in performance parameters among heterogeneous UAVs can significantly amplify computational complexity, posing challenges to solving the multi-region coverage path-planning problem. Consequently, this study studies a clustering-based method to tackle the multi-region coverage path-planning problem of heterogeneous UAVs. First, the constraints necessary during the planning process are analyzed, and a planning formula based on an integer linear programming model is established. Subsequently, this problem is decomposed into regional allocation and visiting order optimization subproblems. This study proposes a novel clustering algorithm that utilizes centroid iteration and spatiotemporal similarity to allocate regions and adopts the nearest-to-end policy to optimize the visiting order. Additionally, a distance-based bilateral shortest-selection strategy is proposed to generate region-scanning trajectories, which serve as trajectory references for real flight. Simulation results in this study prove the effective performance of the proposed clustering algorithm and region-scanning strategy.","PeriodicalId":36448,"journal":{"name":"Drones","volume":"65 5","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering-Based Multi-Region Coverage-Path Planning of Heterogeneous UAVs\",\"authors\":\"Peng Xiao, Ni Li, Feng Xie, Haihong Ni, Min Zhang, Ban Wang\",\"doi\":\"10.3390/drones7110664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unmanned aerial vehicles (UAVs) multi-area coverage-path planning has a broad range of applications in agricultural mapping and military reconnaissance. Compared to homogeneous UAVs, heterogeneous UAVs have higher application value due to their superior flexibility and efficiency. Nevertheless, variations in performance parameters among heterogeneous UAVs can significantly amplify computational complexity, posing challenges to solving the multi-region coverage path-planning problem. Consequently, this study studies a clustering-based method to tackle the multi-region coverage path-planning problem of heterogeneous UAVs. First, the constraints necessary during the planning process are analyzed, and a planning formula based on an integer linear programming model is established. Subsequently, this problem is decomposed into regional allocation and visiting order optimization subproblems. This study proposes a novel clustering algorithm that utilizes centroid iteration and spatiotemporal similarity to allocate regions and adopts the nearest-to-end policy to optimize the visiting order. Additionally, a distance-based bilateral shortest-selection strategy is proposed to generate region-scanning trajectories, which serve as trajectory references for real flight. Simulation results in this study prove the effective performance of the proposed clustering algorithm and region-scanning strategy.\",\"PeriodicalId\":36448,\"journal\":{\"name\":\"Drones\",\"volume\":\"65 5\",\"pages\":\"0\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/drones7110664\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/drones7110664","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Clustering-Based Multi-Region Coverage-Path Planning of Heterogeneous UAVs
Unmanned aerial vehicles (UAVs) multi-area coverage-path planning has a broad range of applications in agricultural mapping and military reconnaissance. Compared to homogeneous UAVs, heterogeneous UAVs have higher application value due to their superior flexibility and efficiency. Nevertheless, variations in performance parameters among heterogeneous UAVs can significantly amplify computational complexity, posing challenges to solving the multi-region coverage path-planning problem. Consequently, this study studies a clustering-based method to tackle the multi-region coverage path-planning problem of heterogeneous UAVs. First, the constraints necessary during the planning process are analyzed, and a planning formula based on an integer linear programming model is established. Subsequently, this problem is decomposed into regional allocation and visiting order optimization subproblems. This study proposes a novel clustering algorithm that utilizes centroid iteration and spatiotemporal similarity to allocate regions and adopts the nearest-to-end policy to optimize the visiting order. Additionally, a distance-based bilateral shortest-selection strategy is proposed to generate region-scanning trajectories, which serve as trajectory references for real flight. Simulation results in this study prove the effective performance of the proposed clustering algorithm and region-scanning strategy.