欠驱动自主水下航行器跟踪控制的自适应非奇异快速终端滑模控制

Rahul Ranjan Bharti, Santosha K Dwivedy
{"title":"欠驱动自主水下航行器跟踪控制的自适应非奇异快速终端滑模控制","authors":"Rahul Ranjan Bharti, Santosha K Dwivedy","doi":"10.1177/09596518231204799","DOIUrl":null,"url":null,"abstract":"This article proposes an adaptive nonsingular fast terminal sliding mode control scheme with piecewise fast multi-power reaching law for tracking control of underactuated autonomous underwater vehicles under model uncertainties, ocean disturbances, and measurement noise. This control approach enhances the robustness and guarantees faster convergence of state error to zero in finite time while reducing the chattering effect. Utilizing the benefit of adaption law prevents overestimating control parameters, and it eliminates the need for the upper bound value of disturbances. The overall stability of the system is analyzed using the Lyapunov criterion. The results of the proposed approach are compared with adaptive nonsingular terminal sliding mode control and adaptive sliding mode control. The performance of the proposed control approach is evaluated by using the performance indices root mean square error and chattering indicator. The simulation results confirm the efficiency of the proposed approach.","PeriodicalId":20638,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","volume":"294 3","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive nonsingular fast terminal sliding mode control for the tracking control of underactuated autonomous underwater vehicles\",\"authors\":\"Rahul Ranjan Bharti, Santosha K Dwivedy\",\"doi\":\"10.1177/09596518231204799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an adaptive nonsingular fast terminal sliding mode control scheme with piecewise fast multi-power reaching law for tracking control of underactuated autonomous underwater vehicles under model uncertainties, ocean disturbances, and measurement noise. This control approach enhances the robustness and guarantees faster convergence of state error to zero in finite time while reducing the chattering effect. Utilizing the benefit of adaption law prevents overestimating control parameters, and it eliminates the need for the upper bound value of disturbances. The overall stability of the system is analyzed using the Lyapunov criterion. The results of the proposed approach are compared with adaptive nonsingular terminal sliding mode control and adaptive sliding mode control. The performance of the proposed control approach is evaluated by using the performance indices root mean square error and chattering indicator. The simulation results confirm the efficiency of the proposed approach.\",\"PeriodicalId\":20638,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"volume\":\"294 3\",\"pages\":\"0\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09596518231204799\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09596518231204799","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对欠驱动自主水下航行器在模型不确定性、海洋扰动和测量噪声条件下的跟踪控制问题,提出了一种分段快速多功率逼近律的自适应非奇异快速终端滑模控制方案。该控制方法增强了系统的鲁棒性,保证了系统的状态误差在有限时间内快速收敛到零,同时减小了系统的抖振效应。利用自适应律的优点,避免了对控制参数的过高估计,消除了对扰动上界值的要求。利用李雅普诺夫准则分析了系统的整体稳定性。将该方法与自适应非奇异终端滑模控制和自适应滑模控制进行了比较。采用性能指标均方根误差和抖振指标对所提控制方法的性能进行了评价。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive nonsingular fast terminal sliding mode control for the tracking control of underactuated autonomous underwater vehicles
This article proposes an adaptive nonsingular fast terminal sliding mode control scheme with piecewise fast multi-power reaching law for tracking control of underactuated autonomous underwater vehicles under model uncertainties, ocean disturbances, and measurement noise. This control approach enhances the robustness and guarantees faster convergence of state error to zero in finite time while reducing the chattering effect. Utilizing the benefit of adaption law prevents overestimating control parameters, and it eliminates the need for the upper bound value of disturbances. The overall stability of the system is analyzed using the Lyapunov criterion. The results of the proposed approach are compared with adaptive nonsingular terminal sliding mode control and adaptive sliding mode control. The performance of the proposed control approach is evaluated by using the performance indices root mean square error and chattering indicator. The simulation results confirm the efficiency of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
18.80%
发文量
99
审稿时长
4.2 months
期刊介绍: Systems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering refleSystems and control studies provide a unifying framework for a wide range of engineering disciplines and industrial applications. The Journal of Systems and Control Engineering reflects this diversity by giving prominence to experimental application and industrial studies. "It is clear from the feedback we receive that the Journal is now recognised as one of the leaders in its field. We are particularly interested in highlighting experimental applications and industrial studies, but also new theoretical developments which are likely to provide the foundation for future applications. In 2009, we launched a new Series of "Forward Look" papers written by leading researchers and practitioners. These short articles are intended to be provocative and help to set the agenda for future developments. We continue to strive for fast decision times and minimum delays in the production processes." Professor Cliff Burrows - University of Bath, UK This journal is a member of the Committee on Publication Ethics (COPE).cts this diversity by giving prominence to experimental application and industrial studies.
期刊最新文献
Hybrid-triggered H∞ control for Markov jump systems with quantizations and hybrid attacks Design optimization and simulation of a 3D printed cable-driven continuum robot using IKM-ANN and nTop software Optimal course tracking control of USV with input dead zone based on adaptive fuzzy dynamic programing Development of new framework for order abatement and control design strategy Unwinding-free composite full-order sliding-mode control for attitude tracking of flexible spacecraft
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1