利用扫描开尔文探针力显微镜和有限元模拟研究了X52管线钢冶金微相中氢原子的分布

Qing Hu, Yuan Li, Y. Frank Cheng
{"title":"利用扫描开尔文探针力显微镜和有限元模拟研究了X52管线钢冶金微相中氢原子的分布","authors":"Qing Hu, Yuan Li, Y. Frank Cheng","doi":"10.1007/s44251-023-00001-w","DOIUrl":null,"url":null,"abstract":"Abstract The work combined scanning Kelvin probe force microscopy measurements and finite element modelling to study the diffusion and distribution of hydrogen (H) atoms at metallurgical microphases contained in X52 pipeline steel. Results show that the pearlite contained in the steel is more stable than the ferrite during electropolishing, as indicated by the measured topographic profiles and Volta potentials. The hydrogen (H)-charging enhances the electrochemical activity of both pearlite and ferrite, as shown by increased Volta potential and thus the decreased work function. As the H-charging time increases, the Volta potentials of both phases further increase, implying that their activities increase with the H-charging time. The pearlite has a greater Volta potential and thus a lower work function than the ferrite. This is associated with more H atoms accumulating at the pearlite than at the ferrite. The H atom diffusion and accumulation are affected by H diffusivity at phase boundaries, H-trap binding energy and the number of traps in the steel.","PeriodicalId":17031,"journal":{"name":"Journal of Surface Science and Technology","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of hydrogen atoms at metallurgical microphases of X52 pipeline steel studied by scanning Kelvin probe force microscopy and finite element modelling\",\"authors\":\"Qing Hu, Yuan Li, Y. Frank Cheng\",\"doi\":\"10.1007/s44251-023-00001-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The work combined scanning Kelvin probe force microscopy measurements and finite element modelling to study the diffusion and distribution of hydrogen (H) atoms at metallurgical microphases contained in X52 pipeline steel. Results show that the pearlite contained in the steel is more stable than the ferrite during electropolishing, as indicated by the measured topographic profiles and Volta potentials. The hydrogen (H)-charging enhances the electrochemical activity of both pearlite and ferrite, as shown by increased Volta potential and thus the decreased work function. As the H-charging time increases, the Volta potentials of both phases further increase, implying that their activities increase with the H-charging time. The pearlite has a greater Volta potential and thus a lower work function than the ferrite. This is associated with more H atoms accumulating at the pearlite than at the ferrite. The H atom diffusion and accumulation are affected by H diffusivity at phase boundaries, H-trap binding energy and the number of traps in the steel.\",\"PeriodicalId\":17031,\"journal\":{\"name\":\"Journal of Surface Science and Technology\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Surface Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s44251-023-00001-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Surface Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44251-023-00001-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

摘要结合扫描开尔文探针力显微镜测量和有限元模拟,研究了X52管线钢冶金微相中氢原子的扩散和分布。结果表明,在电抛光过程中,钢中的珠光体比铁素体更稳定。氢(H)充电增强了珠光体和铁氧体的电化学活性,表现为伏特电位的增加和功函数的减小。随着h -充电时间的增加,两相的Volta电位进一步增大,表明它们的活度随h -充电时间的增加而增加。珠光体比铁氧体具有更大的伏特电位,因此功函数更小。这与珠光体上的氢原子比铁素体上的氢原子多有关。钢中H原子的扩散和积累受相边界H扩散系数、H阱结合能和H阱数目的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distribution of hydrogen atoms at metallurgical microphases of X52 pipeline steel studied by scanning Kelvin probe force microscopy and finite element modelling
Abstract The work combined scanning Kelvin probe force microscopy measurements and finite element modelling to study the diffusion and distribution of hydrogen (H) atoms at metallurgical microphases contained in X52 pipeline steel. Results show that the pearlite contained in the steel is more stable than the ferrite during electropolishing, as indicated by the measured topographic profiles and Volta potentials. The hydrogen (H)-charging enhances the electrochemical activity of both pearlite and ferrite, as shown by increased Volta potential and thus the decreased work function. As the H-charging time increases, the Volta potentials of both phases further increase, implying that their activities increase with the H-charging time. The pearlite has a greater Volta potential and thus a lower work function than the ferrite. This is associated with more H atoms accumulating at the pearlite than at the ferrite. The H atom diffusion and accumulation are affected by H diffusivity at phase boundaries, H-trap binding energy and the number of traps in the steel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍: The Indian Society for Surface Science and Technology is an organization for the cultivation, interaction and dissemination of knowledge in the field of surface science and technology. It also strives to promote Industry-Academia interaction
期刊最新文献
Revealing melt-vapor-powder interaction towards laser powder bed fusion process via DEM-CFD coupled model Progress and challenges in energy storage and utilization via ammonia Deposition of DLC film on the inner surface of N80 pipeline by hollow cathode PECVD Improving activity and barrier properties of epoxy modified polyurethane coating with in-situ polymerized polypyrrole functionalized graphene oxide Machined surface formation and integrity control technology of SiCp/Al composites: a review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1