右美托咪定预处理通过AMPK通路抑制大鼠心肌缺血再灌注损伤中的ROS

IF 0.6 4区 医学 Q4 PHARMACOLOGY & PHARMACY Tropical Journal of Pharmaceutical Research Pub Date : 2023-09-15 DOI:10.4314/tjpr.v22i8.11
Shanhu Wu, Wanping Hong, Xue'e Su, Jinwei Liang
{"title":"右美托咪定预处理通过AMPK通路抑制大鼠心肌缺血再灌注损伤中的ROS","authors":"Shanhu Wu, Wanping Hong, Xue'e Su, Jinwei Liang","doi":"10.4314/tjpr.v22i8.11","DOIUrl":null,"url":null,"abstract":"Purpose: To elucidate the basis for the cardioprotective effect of dexmedetomidine pre-treatment on ROS-induced myocardial ischemia-reperfusion injury (IRI) in rats.Methods: Sixty Sprague-Dawley (SD) rats were assigned to sham, model and dexmedetomidine intervention groups, each having 20 rats. Myocardial IRI was induced in the model and dexmedetomidine intervention groups using modified suture method. In sham group, chests of rats were opened, but without ligation, while dexmedetomidine intervention group was pre-treated with dexmedetomidine (5 μg/kg) before establishment of the IRI model. Protein expressions of adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK) was determined by Western blot assay. Mean fluorescence intensity of ROS was measured using flow cytometry.Results: AMPK protein was significantly down-regulated in model rats, relative to sham rats, but significantly higher in dexmedetomidine intervention rats (p < 0.05). In model rats, mean ROS fluorescence intensity and degree of apoptosis of cardiomyocytes were higher than the corresponding values in sham rats (p < 0.05), but lower in dexmedetomidine intervention group.Conclusion: Dexmedetomidine reduces oxidative stress in myocardial tissue and exerts a protective role by activating AMPK pathway and inhibiting mitochondrial generation of ROS. Therefore, this compound might have a potential clinical role in the management of IRI.","PeriodicalId":23347,"journal":{"name":"Tropical Journal of Pharmaceutical Research","volume":"2013 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dexmedetomidine pre-conditioning induces inhibition of ROS in myocardial ischemia-reperfusion injury in rats through AMPK pathway\",\"authors\":\"Shanhu Wu, Wanping Hong, Xue'e Su, Jinwei Liang\",\"doi\":\"10.4314/tjpr.v22i8.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose: To elucidate the basis for the cardioprotective effect of dexmedetomidine pre-treatment on ROS-induced myocardial ischemia-reperfusion injury (IRI) in rats.Methods: Sixty Sprague-Dawley (SD) rats were assigned to sham, model and dexmedetomidine intervention groups, each having 20 rats. Myocardial IRI was induced in the model and dexmedetomidine intervention groups using modified suture method. In sham group, chests of rats were opened, but without ligation, while dexmedetomidine intervention group was pre-treated with dexmedetomidine (5 μg/kg) before establishment of the IRI model. Protein expressions of adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK) was determined by Western blot assay. Mean fluorescence intensity of ROS was measured using flow cytometry.Results: AMPK protein was significantly down-regulated in model rats, relative to sham rats, but significantly higher in dexmedetomidine intervention rats (p < 0.05). In model rats, mean ROS fluorescence intensity and degree of apoptosis of cardiomyocytes were higher than the corresponding values in sham rats (p < 0.05), but lower in dexmedetomidine intervention group.Conclusion: Dexmedetomidine reduces oxidative stress in myocardial tissue and exerts a protective role by activating AMPK pathway and inhibiting mitochondrial generation of ROS. Therefore, this compound might have a potential clinical role in the management of IRI.\",\"PeriodicalId\":23347,\"journal\":{\"name\":\"Tropical Journal of Pharmaceutical Research\",\"volume\":\"2013 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Journal of Pharmaceutical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/tjpr.v22i8.11\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Journal of Pharmaceutical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/tjpr.v22i8.11","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

目的:探讨右美托咪定预处理对ros诱导的大鼠心肌缺血再灌注损伤(IRI)心脏保护作用的基础。方法:将SD大鼠60只分为假手术组、模型组和右美托咪定干预组,每组20只。模型组和右美托咪定干预组采用改良缝线法诱导心肌IRI。假手术组大鼠开胸不结扎,右美托咪定干预组在IRI模型建立前给予右美托咪定(5 μg/kg)预处理。Western blot检测腺苷5′-单磷酸腺苷(AMP)活化蛋白激酶(AMPK)的蛋白表达。采用流式细胞术检测ROS的平均荧光强度。结果:AMPK蛋白在模型大鼠中相对于假手术大鼠显著下调,但在右美托咪定干预大鼠中显著升高(p <0.05)。模型大鼠心肌细胞ROS荧光平均强度和凋亡程度均高于假手术大鼠(p <0.05),右美托咪定干预组较低。结论:右美托咪定通过激活AMPK通路,抑制线粒体ROS生成,降低心肌组织氧化应激,发挥保护作用。因此,该化合物可能在IRI的治疗中具有潜在的临床作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dexmedetomidine pre-conditioning induces inhibition of ROS in myocardial ischemia-reperfusion injury in rats through AMPK pathway
Purpose: To elucidate the basis for the cardioprotective effect of dexmedetomidine pre-treatment on ROS-induced myocardial ischemia-reperfusion injury (IRI) in rats.Methods: Sixty Sprague-Dawley (SD) rats were assigned to sham, model and dexmedetomidine intervention groups, each having 20 rats. Myocardial IRI was induced in the model and dexmedetomidine intervention groups using modified suture method. In sham group, chests of rats were opened, but without ligation, while dexmedetomidine intervention group was pre-treated with dexmedetomidine (5 μg/kg) before establishment of the IRI model. Protein expressions of adenosine 5‘-monophosphate (AMP)-activated protein kinase (AMPK) was determined by Western blot assay. Mean fluorescence intensity of ROS was measured using flow cytometry.Results: AMPK protein was significantly down-regulated in model rats, relative to sham rats, but significantly higher in dexmedetomidine intervention rats (p < 0.05). In model rats, mean ROS fluorescence intensity and degree of apoptosis of cardiomyocytes were higher than the corresponding values in sham rats (p < 0.05), but lower in dexmedetomidine intervention group.Conclusion: Dexmedetomidine reduces oxidative stress in myocardial tissue and exerts a protective role by activating AMPK pathway and inhibiting mitochondrial generation of ROS. Therefore, this compound might have a potential clinical role in the management of IRI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
33.30%
发文量
490
审稿时长
4-8 weeks
期刊介绍: We seek to encourage pharmaceutical and allied research of tropical and international relevance and to foster multidisciplinary research and collaboration among scientists, the pharmaceutical industry and the healthcare professionals. We publish articles in pharmaceutical sciences and related disciplines (including biotechnology, cell and molecular biology, drug utilization including adverse drug events, medical and other life sciences, and related engineering fields). Although primarily devoted to original research papers, we welcome reviews on current topics of special interest and relevance.
期刊最新文献
Toxicological evaluation of Sargassum plagiophyllum extract in male mice Safety and efficacy of salvianolate injection in preventing deep vein thrombosis after total hip replacement Synergistic effect of continuous care and cephalosporin antimicrobials in managing pulmonary infections in acute stroke patients: A comprehensive study Effect of paclitaxel octreotide conjugate on human ovarian paclitaxel-resistant cell xenograft tumor model and the mechanism underlying reversal of paclitaxel resistance Nectin-3 and Nectin-4: potential prognostic biomarkers for therapeutic targeting of cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1