{"title":"参与能源储备市场的聚合器自调度问题的两阶段随机-鲁棒模型","authors":"Jian Wang, Ning Xie, Chunyi Huang, Yong Wang","doi":"10.1186/s41601-023-00320-y","DOIUrl":null,"url":null,"abstract":"Abstract This paper addresses a two-stage stochastic-robust model for the day-ahead self-scheduling problem of an aggregator considering uncertainties. The aggregator, which integrates power and capacity of small-scale prosumers and flexible community-owned devices, trades electric energy in the day-ahead (DAM) and real-time energy markets (RTM), and trades reserve capacity and deployment in the reserve capacity (RCM) and reserve deployment markets (RDM). The ability of the aggregator providing reserve service is constrained by the regulations of reserve market rules, including minimum offer/bid size and minimum delivery duration. A combination approach of stochastic programming (SP) and robust optimization (RO) is used to model different kinds of uncertainties, including those of market price, power/demand and reserve deployment. The risk management of the aggregator is considered through conditional value at risk (CVaR) and fluctuation intervals of the uncertain parameters. Case studies numerically show the economic revenue and the energy-reserve schedule of the aggregator with participation in different markets, reserve regulations, and risk preferences.","PeriodicalId":51639,"journal":{"name":"Protection and Control of Modern Power Systems","volume":"44 1","pages":"0"},"PeriodicalIF":8.7000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-stage stochastic-robust model for the self-scheduling problem of an aggregator participating in energy and reserve markets\",\"authors\":\"Jian Wang, Ning Xie, Chunyi Huang, Yong Wang\",\"doi\":\"10.1186/s41601-023-00320-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper addresses a two-stage stochastic-robust model for the day-ahead self-scheduling problem of an aggregator considering uncertainties. The aggregator, which integrates power and capacity of small-scale prosumers and flexible community-owned devices, trades electric energy in the day-ahead (DAM) and real-time energy markets (RTM), and trades reserve capacity and deployment in the reserve capacity (RCM) and reserve deployment markets (RDM). The ability of the aggregator providing reserve service is constrained by the regulations of reserve market rules, including minimum offer/bid size and minimum delivery duration. A combination approach of stochastic programming (SP) and robust optimization (RO) is used to model different kinds of uncertainties, including those of market price, power/demand and reserve deployment. The risk management of the aggregator is considered through conditional value at risk (CVaR) and fluctuation intervals of the uncertain parameters. Case studies numerically show the economic revenue and the energy-reserve schedule of the aggregator with participation in different markets, reserve regulations, and risk preferences.\",\"PeriodicalId\":51639,\"journal\":{\"name\":\"Protection and Control of Modern Power Systems\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2023-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protection and Control of Modern Power Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s41601-023-00320-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protection and Control of Modern Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41601-023-00320-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Two-stage stochastic-robust model for the self-scheduling problem of an aggregator participating in energy and reserve markets
Abstract This paper addresses a two-stage stochastic-robust model for the day-ahead self-scheduling problem of an aggregator considering uncertainties. The aggregator, which integrates power and capacity of small-scale prosumers and flexible community-owned devices, trades electric energy in the day-ahead (DAM) and real-time energy markets (RTM), and trades reserve capacity and deployment in the reserve capacity (RCM) and reserve deployment markets (RDM). The ability of the aggregator providing reserve service is constrained by the regulations of reserve market rules, including minimum offer/bid size and minimum delivery duration. A combination approach of stochastic programming (SP) and robust optimization (RO) is used to model different kinds of uncertainties, including those of market price, power/demand and reserve deployment. The risk management of the aggregator is considered through conditional value at risk (CVaR) and fluctuation intervals of the uncertain parameters. Case studies numerically show the economic revenue and the energy-reserve schedule of the aggregator with participation in different markets, reserve regulations, and risk preferences.
期刊介绍:
Protection and Control of Modern Power Systems (PCMP) is the first international modern power system protection and control journal originated in China. The journal is dedicated to presenting top-level academic achievements in this field and aims to provide a platform for international researchers and engineers, with a special focus on authors from China, to maximize the papers' impact worldwide and contribute to the development of the power industry. PCMP is sponsored by Xuchang Ketop Electrical Research Institute and is edited and published by Power System Protection and Control Press.
PCMP focuses on advanced views, techniques, methodologies, and experience in the field of protection and control of modern power systems to showcase the latest technological achievements. However, it is important to note that the journal will cease to be published by SpringerOpen as of 31 December 2023. Nonetheless, it will continue in cooperation with a new publisher.