{"title":"弹性多路径路由协议,实现无线传感器网络的危险事件监控","authors":"Bálint Üveges, Máté Lőrincz, András Oláh","doi":"10.5937/telfor2301020q","DOIUrl":null,"url":null,"abstract":"With the growing impact of climate change, the occurrence of hazardous spatial events increases. Wireless sensor networks are suitable to sense, monitor, and report such events in remote or inaccessible locations. Hazardous events are rare compared to the network's lifetime, thus maintaining its consistency must be realized energy efficiently. During the impact, the network must monitor the event with precision, and report the incidence, while mitigating the loss of perishing nodes. To fulfill these requirements, we propose the Self-healing Multipath Routing Protocol that is based on the Heterogeneous Disjoint Multipath Routing Protocol and introduces application-specific extensions to improve network stability, resiliency, and failover. To realize the monitoring of spatially extended hazardous events we introduce an event-based, application-level protocol. To evaluate the routing protocol, we perform simulations utilizing a cellular automaton-based wildfire model as the spatial event and provide measurement results including delivery ratio, consumed energy, and protocol-specific metrics.","PeriodicalId":37719,"journal":{"name":"Telfor Journal","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resilient multipath routing protocol to enable hazardous event monitoring with wireless sensor network\",\"authors\":\"Bálint Üveges, Máté Lőrincz, András Oláh\",\"doi\":\"10.5937/telfor2301020q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the growing impact of climate change, the occurrence of hazardous spatial events increases. Wireless sensor networks are suitable to sense, monitor, and report such events in remote or inaccessible locations. Hazardous events are rare compared to the network's lifetime, thus maintaining its consistency must be realized energy efficiently. During the impact, the network must monitor the event with precision, and report the incidence, while mitigating the loss of perishing nodes. To fulfill these requirements, we propose the Self-healing Multipath Routing Protocol that is based on the Heterogeneous Disjoint Multipath Routing Protocol and introduces application-specific extensions to improve network stability, resiliency, and failover. To realize the monitoring of spatially extended hazardous events we introduce an event-based, application-level protocol. To evaluate the routing protocol, we perform simulations utilizing a cellular automaton-based wildfire model as the spatial event and provide measurement results including delivery ratio, consumed energy, and protocol-specific metrics.\",\"PeriodicalId\":37719,\"journal\":{\"name\":\"Telfor Journal\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Telfor Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5937/telfor2301020q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telfor Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/telfor2301020q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Resilient multipath routing protocol to enable hazardous event monitoring with wireless sensor network
With the growing impact of climate change, the occurrence of hazardous spatial events increases. Wireless sensor networks are suitable to sense, monitor, and report such events in remote or inaccessible locations. Hazardous events are rare compared to the network's lifetime, thus maintaining its consistency must be realized energy efficiently. During the impact, the network must monitor the event with precision, and report the incidence, while mitigating the loss of perishing nodes. To fulfill these requirements, we propose the Self-healing Multipath Routing Protocol that is based on the Heterogeneous Disjoint Multipath Routing Protocol and introduces application-specific extensions to improve network stability, resiliency, and failover. To realize the monitoring of spatially extended hazardous events we introduce an event-based, application-level protocol. To evaluate the routing protocol, we perform simulations utilizing a cellular automaton-based wildfire model as the spatial event and provide measurement results including delivery ratio, consumed energy, and protocol-specific metrics.
期刊介绍:
The TELFOR Journal is an open access international scientific journal publishing improved and extended versions of the selected best papers initially reported at the annual TELFOR Conference (www.telfor.rs), papers invited by the Editorial Board, and papers submitted by authors themselves for publishing. All papers are subject to reviewing. The TELFOR Journal is published in the English language, with both electronic and printed versions. Being an IEEE co-supported publication, it will follow all the IEEE rules and procedures. The TELFOR Journal covers all the essential branches of modern telecommunications and information technology: Telecommunications Policy and Services, Telecommunications Networks, Radio Communications, Communications Systems, Signal Processing, Optical Communications, Applied Electromagnetics, Applied Electronics, Multimedia, Software Tools and Applications, as well as other fields related to ICT. This large spectrum of topics accounts for the rapid convergence through telecommunications of the underlying technologies towards the information and knowledge society. The Journal provides a medium for exchanging research results and technological achievements accomplished by the scientific community from academia and industry.