FGF18 引物

IF 2.2 3区 生物学 Q4 CELL BIOLOGY Differentiation Pub Date : 2024-09-01 DOI:10.1016/j.diff.2023.10.003
{"title":"FGF18 引物","authors":"","doi":"10.1016/j.diff.2023.10.003","DOIUrl":null,"url":null,"abstract":"<div><p><em>FGF18</em> was discovered in 1998. It is a pleiotropic growth factor that stimulates major signalling pathways involved in cell proliferation and growth, and is involved in the development and homeostasis of many tissues such as bone, lung, and central nervous system. The gene consists of five exons that code for a 207 amino acid glycosylated protein. <em>FGF18</em> is widely expressed in developing and adult chickens, mice, and humans, being seen in the mesenchyme, brain, skeleton, heart, and lungs. Knockout studies of <em>FGF18</em> in mice lead to perinatal death, characterised by distinct phenotypes such as cleft palate, smaller body size, curved long bones, deformed ribs, and reduced crania. As can be expected from a protein involved in so many functions <em>FGF18</em> is associated with various diseases such as idiopathic pulmonary fibrosis, congenital diaphragmatic hernia, and most notably various types of cancer such as breast, lung, and ovarian cancer.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"139 ","pages":"Article 100735"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301468123000749/pdfft?md5=1acdf26f625714a9092eebc66a86c92d&pid=1-s2.0-S0301468123000749-main.pdf","citationCount":"0","resultStr":"{\"title\":\"FGF18\",\"authors\":\"\",\"doi\":\"10.1016/j.diff.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>FGF18</em> was discovered in 1998. It is a pleiotropic growth factor that stimulates major signalling pathways involved in cell proliferation and growth, and is involved in the development and homeostasis of many tissues such as bone, lung, and central nervous system. The gene consists of five exons that code for a 207 amino acid glycosylated protein. <em>FGF18</em> is widely expressed in developing and adult chickens, mice, and humans, being seen in the mesenchyme, brain, skeleton, heart, and lungs. Knockout studies of <em>FGF18</em> in mice lead to perinatal death, characterised by distinct phenotypes such as cleft palate, smaller body size, curved long bones, deformed ribs, and reduced crania. As can be expected from a protein involved in so many functions <em>FGF18</em> is associated with various diseases such as idiopathic pulmonary fibrosis, congenital diaphragmatic hernia, and most notably various types of cancer such as breast, lung, and ovarian cancer.</p></div>\",\"PeriodicalId\":50579,\"journal\":{\"name\":\"Differentiation\",\"volume\":\"139 \",\"pages\":\"Article 100735\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301468123000749/pdfft?md5=1acdf26f625714a9092eebc66a86c92d&pid=1-s2.0-S0301468123000749-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301468123000749\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301468123000749","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

FGF18于1998年被发现。它是一种多效性生长因子,刺激参与细胞增殖和生长的主要信号通路,并参与许多组织的发育和稳态,如骨、肺和中枢神经系统。该基因由五个外显子组成,编码一个207个氨基酸的糖基化蛋白。FGF18在发育中的和成年的鸡、小鼠和人类中广泛表达,存在于间质、脑、骨骼、心脏和肺中。敲除小鼠FGF18的研究导致围产期死亡,其特征是不同的表型,如腭裂、体型较小、弯曲的长骨、变形的肋骨和缩小的颅骨。正如我们所预料的那样,FGF18参与了如此多的功能,与各种疾病有关,如特发性肺纤维化、先天性膈疝,最显著的是各种类型的癌症,如乳腺癌、肺癌和卵巢癌。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FGF18

FGF18 was discovered in 1998. It is a pleiotropic growth factor that stimulates major signalling pathways involved in cell proliferation and growth, and is involved in the development and homeostasis of many tissues such as bone, lung, and central nervous system. The gene consists of five exons that code for a 207 amino acid glycosylated protein. FGF18 is widely expressed in developing and adult chickens, mice, and humans, being seen in the mesenchyme, brain, skeleton, heart, and lungs. Knockout studies of FGF18 in mice lead to perinatal death, characterised by distinct phenotypes such as cleft palate, smaller body size, curved long bones, deformed ribs, and reduced crania. As can be expected from a protein involved in so many functions FGF18 is associated with various diseases such as idiopathic pulmonary fibrosis, congenital diaphragmatic hernia, and most notably various types of cancer such as breast, lung, and ovarian cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
期刊最新文献
NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells. Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B. SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila. Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development. WNT16 primer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1