通过插入外延BiFeO3铁电层提高BiVO4光阳极性能

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED 能源化学 Pub Date : 2023-11-07 DOI:10.1016/j.jechem.2023.10.041
Haejin Jang , Yejoon Kim , Hojoong Choi , Jiwoong Yang , Yoonsung Jung , Sungkyun Choi , Donghyeon Lee , Ho Won Jang , Sanghan Lee
{"title":"通过插入外延BiFeO3铁电层提高BiVO4光阳极性能","authors":"Haejin Jang ,&nbsp;Yejoon Kim ,&nbsp;Hojoong Choi ,&nbsp;Jiwoong Yang ,&nbsp;Yoonsung Jung ,&nbsp;Sungkyun Choi ,&nbsp;Donghyeon Lee ,&nbsp;Ho Won Jang ,&nbsp;Sanghan Lee","doi":"10.1016/j.jechem.2023.10.041","DOIUrl":null,"url":null,"abstract":"<div><p>BiVO<sub>4</sub> (BVO) is a promising material as the photoanode for use in photoelectrochemical applications. However, the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance. To address this, various modifications have been attempted, including the use of ferroelectric materials. Ferroelectric materials can form a permanent polarization within the layer, enhancing the separation and transport of photo-excited electron-hole pairs. In this study, we propose a novel approach by depositing an epitaxial BiFeO<sub>3</sub> (BFO) thin film underneath the BVO thin film (BVO/BFO) to harness the ferroelectric property of BFO. The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination. As a result, the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density (0.65 mA cm<sup>−2</sup>) at 1.23 V<sub>RHE</sub> under the illumination compared to the bare BVO photoanodes (0.18 mA cm<sup>−2</sup>), which is consistent with the increase of the applied bias photon-to-current conversion efficiencies (ABPE) and the result of electrochemical impedance spectroscopy (EIS) analysis. These results can be attributed to the self-polarization exhibited by the inserted BFO thin film, which promoted the charge separation and transfer efficiency of the BVO photoanodes.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer\",\"authors\":\"Haejin Jang ,&nbsp;Yejoon Kim ,&nbsp;Hojoong Choi ,&nbsp;Jiwoong Yang ,&nbsp;Yoonsung Jung ,&nbsp;Sungkyun Choi ,&nbsp;Donghyeon Lee ,&nbsp;Ho Won Jang ,&nbsp;Sanghan Lee\",\"doi\":\"10.1016/j.jechem.2023.10.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>BiVO<sub>4</sub> (BVO) is a promising material as the photoanode for use in photoelectrochemical applications. However, the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance. To address this, various modifications have been attempted, including the use of ferroelectric materials. Ferroelectric materials can form a permanent polarization within the layer, enhancing the separation and transport of photo-excited electron-hole pairs. In this study, we propose a novel approach by depositing an epitaxial BiFeO<sub>3</sub> (BFO) thin film underneath the BVO thin film (BVO/BFO) to harness the ferroelectric property of BFO. The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination. As a result, the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density (0.65 mA cm<sup>−2</sup>) at 1.23 V<sub>RHE</sub> under the illumination compared to the bare BVO photoanodes (0.18 mA cm<sup>−2</sup>), which is consistent with the increase of the applied bias photon-to-current conversion efficiencies (ABPE) and the result of electrochemical impedance spectroscopy (EIS) analysis. These results can be attributed to the self-polarization exhibited by the inserted BFO thin film, which promoted the charge separation and transfer efficiency of the BVO photoanodes.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623006186\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623006186","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

BiVO4 (BVO)是一种很有前途的光电阳极材料。然而,BVO的高电荷复合和慢电荷转移一直是实现理想光电性能的障碍。为了解决这个问题,已经尝试了各种修改,包括使用铁电材料。铁电材料可以在层内形成永久极化,增强光激发电子-空穴对的分离和输运。在这项研究中,我们提出了一种新的方法,通过在BVO薄膜(BVO/BFO)下沉积外延BiFeO3 (BFO)薄膜来利用BFO的铁电特性。所插入的BFO薄膜的自极化同时作为缓冲层增强电荷输运和空穴阻塞层减少电荷复合。结果表明,在1.23 VRHE下,BVO/BFO光阳极的光电流密度(0.65 mA cm−2)比裸BVO光阳极(0.18 mA cm−2)高3.5倍以上,这与施加偏置光子-电流转换效率(ABPE)的提高和电化学阻抗谱(EIS)分析结果一致。这些结果可以归因于插入的BFO薄膜表现出的自极化,促进了BVO光阳极的电荷分离和转移效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer

BiVO4 (BVO) is a promising material as the photoanode for use in photoelectrochemical applications. However, the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance. To address this, various modifications have been attempted, including the use of ferroelectric materials. Ferroelectric materials can form a permanent polarization within the layer, enhancing the separation and transport of photo-excited electron-hole pairs. In this study, we propose a novel approach by depositing an epitaxial BiFeO3 (BFO) thin film underneath the BVO thin film (BVO/BFO) to harness the ferroelectric property of BFO. The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination. As a result, the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density (0.65 mA cm−2) at 1.23 VRHE under the illumination compared to the bare BVO photoanodes (0.18 mA cm−2), which is consistent with the increase of the applied bias photon-to-current conversion efficiencies (ABPE) and the result of electrochemical impedance spectroscopy (EIS) analysis. These results can be attributed to the self-polarization exhibited by the inserted BFO thin film, which promoted the charge separation and transfer efficiency of the BVO photoanodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
期刊最新文献
Reversible Mn2+/Mn4+ double-electron redox in P3-type layer-structured sodium-ion cathode Recent progress of self-supported air electrodes for flexible Zn-air batteries Stable multi-electron reaction stimulated by W doping VS4 for enhancing magnesium storage performance Enhancing BiVO4 photoanode performance by insertion of an epitaxial BiFeO3 ferroelectric layer In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1