基于云的灵活模型大小和自适应批号的协同农业学习

IF 3.9 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Sensor Networks Pub Date : 2023-10-21 DOI:10.1145/3628431
Hongjian Shi, Ilyas Bayanbayev, Wenkai Zheng, Ruhui Ma, Haibing Guan
{"title":"基于云的灵活模型大小和自适应批号的协同农业学习","authors":"Hongjian Shi, Ilyas Bayanbayev, Wenkai Zheng, Ruhui Ma, Haibing Guan","doi":"10.1145/3628431","DOIUrl":null,"url":null,"abstract":"With the rapid growth in the world population, developing agricultural technologies has been an urgent need. Sensor networks have been widely used to monitor and manage agricultural status. Moreover, Artificial Intelligence (AI) techniques are adopted for their high accuracy to enable the analysis of massive data collected through the sensor network. The datasets on the devices of agricultural applications usually need to be completed and bigger, which limits the performance of AI algorithms. Thus, researchers turn to Collaborative Learning (CL) to utilize the data on multiple devices to train a global model privately. However, current CL frameworks for agricultural applications suffer from three problems: data heterogeneity, system heterogeneity, and communication overhead. In this paper, we propose cloud-based Collaborative Agricultural Learning with Flexible model size and Adaptive batch number (CALFA) to improve the efficiency and applicability of the training process while maintaining its effectiveness. CALFA contains three modules. The Classification Pyramid allows the devices to use different sizes of models during training and enables the classification of different object sizes. Adaptive Aggregation modifies the aggregation weights to maintain the convergence speed and accuracy. Adaptive Adjustment modifies the training batch numbers to mitigate the communication overhead. The experimental results illustrate that CALFA outperforms other SOTA CL frameworks by reducing up to 75% communication overhead with nearly no accuracy loss. Also, CALFA enables training on more devices by reducing the model size.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"14 6","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud-based Collaborative Agricultural Learning with Flexible Model Size and Adaptive Batch Number\",\"authors\":\"Hongjian Shi, Ilyas Bayanbayev, Wenkai Zheng, Ruhui Ma, Haibing Guan\",\"doi\":\"10.1145/3628431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth in the world population, developing agricultural technologies has been an urgent need. Sensor networks have been widely used to monitor and manage agricultural status. Moreover, Artificial Intelligence (AI) techniques are adopted for their high accuracy to enable the analysis of massive data collected through the sensor network. The datasets on the devices of agricultural applications usually need to be completed and bigger, which limits the performance of AI algorithms. Thus, researchers turn to Collaborative Learning (CL) to utilize the data on multiple devices to train a global model privately. However, current CL frameworks for agricultural applications suffer from three problems: data heterogeneity, system heterogeneity, and communication overhead. In this paper, we propose cloud-based Collaborative Agricultural Learning with Flexible model size and Adaptive batch number (CALFA) to improve the efficiency and applicability of the training process while maintaining its effectiveness. CALFA contains three modules. The Classification Pyramid allows the devices to use different sizes of models during training and enables the classification of different object sizes. Adaptive Aggregation modifies the aggregation weights to maintain the convergence speed and accuracy. Adaptive Adjustment modifies the training batch numbers to mitigate the communication overhead. The experimental results illustrate that CALFA outperforms other SOTA CL frameworks by reducing up to 75% communication overhead with nearly no accuracy loss. Also, CALFA enables training on more devices by reducing the model size.\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"14 6\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3628431\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3628431","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着世界人口的快速增长,发展农业技术已成为迫切需要。传感器网络已广泛应用于农业状况的监测和管理。此外,采用了人工智能(AI)技术,其精度高,可以对通过传感器网络收集的大量数据进行分析。农业应用设备上的数据集通常需要更完整、更大,这限制了人工智能算法的性能。因此,研究人员转向协作学习(CL),利用多设备上的数据私下训练一个全局模型。然而,当前用于农业应用程序的CL框架存在三个问题:数据异构性、系统异构性和通信开销。在本文中,我们提出了基于云的具有灵活模型大小和自适应批号(CALFA)的协同农业学习,以提高训练过程的效率和适用性,同时保持其有效性。CALFA包含三个模块。分类金字塔允许设备在训练期间使用不同大小的模型,并允许对不同对象大小进行分类。自适应聚合通过修改聚合权值来保持收敛速度和准确性。自适应调整修改训练批号以减轻通信开销。实验结果表明,CALFA在几乎没有精度损失的情况下减少了高达75%的通信开销,优于其他SOTA CL框架。此外,CALFA可以通过减小模型尺寸在更多设备上进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cloud-based Collaborative Agricultural Learning with Flexible Model Size and Adaptive Batch Number
With the rapid growth in the world population, developing agricultural technologies has been an urgent need. Sensor networks have been widely used to monitor and manage agricultural status. Moreover, Artificial Intelligence (AI) techniques are adopted for their high accuracy to enable the analysis of massive data collected through the sensor network. The datasets on the devices of agricultural applications usually need to be completed and bigger, which limits the performance of AI algorithms. Thus, researchers turn to Collaborative Learning (CL) to utilize the data on multiple devices to train a global model privately. However, current CL frameworks for agricultural applications suffer from three problems: data heterogeneity, system heterogeneity, and communication overhead. In this paper, we propose cloud-based Collaborative Agricultural Learning with Flexible model size and Adaptive batch number (CALFA) to improve the efficiency and applicability of the training process while maintaining its effectiveness. CALFA contains three modules. The Classification Pyramid allows the devices to use different sizes of models during training and enables the classification of different object sizes. Adaptive Aggregation modifies the aggregation weights to maintain the convergence speed and accuracy. Adaptive Adjustment modifies the training batch numbers to mitigate the communication overhead. The experimental results illustrate that CALFA outperforms other SOTA CL frameworks by reducing up to 75% communication overhead with nearly no accuracy loss. Also, CALFA enables training on more devices by reducing the model size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Sensor Networks
ACM Transactions on Sensor Networks 工程技术-电信学
CiteScore
5.90
自引率
7.30%
发文量
131
审稿时长
6 months
期刊介绍: ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.
期刊最新文献
Fair and Robust Federated Learning via Decentralized and Adaptive Aggregation based on Blockchain PnA: Robust Aggregation Against Poisoning Attacks to Federated Learning for Edge Intelligence HCCNet: Hybrid Coupled Cooperative Network for Robust Indoor Localization HDM-GNN: A Heterogeneous Dynamic Multi-view Graph Neural Network for Crime Prediction A DRL-based Partial Charging Algorithm for Wireless Rechargeable Sensor Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1