{"title":"基于云的灵活模型大小和自适应批号的协同农业学习","authors":"Hongjian Shi, Ilyas Bayanbayev, Wenkai Zheng, Ruhui Ma, Haibing Guan","doi":"10.1145/3628431","DOIUrl":null,"url":null,"abstract":"With the rapid growth in the world population, developing agricultural technologies has been an urgent need. Sensor networks have been widely used to monitor and manage agricultural status. Moreover, Artificial Intelligence (AI) techniques are adopted for their high accuracy to enable the analysis of massive data collected through the sensor network. The datasets on the devices of agricultural applications usually need to be completed and bigger, which limits the performance of AI algorithms. Thus, researchers turn to Collaborative Learning (CL) to utilize the data on multiple devices to train a global model privately. However, current CL frameworks for agricultural applications suffer from three problems: data heterogeneity, system heterogeneity, and communication overhead. In this paper, we propose cloud-based Collaborative Agricultural Learning with Flexible model size and Adaptive batch number (CALFA) to improve the efficiency and applicability of the training process while maintaining its effectiveness. CALFA contains three modules. The Classification Pyramid allows the devices to use different sizes of models during training and enables the classification of different object sizes. Adaptive Aggregation modifies the aggregation weights to maintain the convergence speed and accuracy. Adaptive Adjustment modifies the training batch numbers to mitigate the communication overhead. The experimental results illustrate that CALFA outperforms other SOTA CL frameworks by reducing up to 75% communication overhead with nearly no accuracy loss. Also, CALFA enables training on more devices by reducing the model size.","PeriodicalId":50910,"journal":{"name":"ACM Transactions on Sensor Networks","volume":"14 6","pages":"0"},"PeriodicalIF":3.9000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cloud-based Collaborative Agricultural Learning with Flexible Model Size and Adaptive Batch Number\",\"authors\":\"Hongjian Shi, Ilyas Bayanbayev, Wenkai Zheng, Ruhui Ma, Haibing Guan\",\"doi\":\"10.1145/3628431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid growth in the world population, developing agricultural technologies has been an urgent need. Sensor networks have been widely used to monitor and manage agricultural status. Moreover, Artificial Intelligence (AI) techniques are adopted for their high accuracy to enable the analysis of massive data collected through the sensor network. The datasets on the devices of agricultural applications usually need to be completed and bigger, which limits the performance of AI algorithms. Thus, researchers turn to Collaborative Learning (CL) to utilize the data on multiple devices to train a global model privately. However, current CL frameworks for agricultural applications suffer from three problems: data heterogeneity, system heterogeneity, and communication overhead. In this paper, we propose cloud-based Collaborative Agricultural Learning with Flexible model size and Adaptive batch number (CALFA) to improve the efficiency and applicability of the training process while maintaining its effectiveness. CALFA contains three modules. The Classification Pyramid allows the devices to use different sizes of models during training and enables the classification of different object sizes. Adaptive Aggregation modifies the aggregation weights to maintain the convergence speed and accuracy. Adaptive Adjustment modifies the training batch numbers to mitigate the communication overhead. The experimental results illustrate that CALFA outperforms other SOTA CL frameworks by reducing up to 75% communication overhead with nearly no accuracy loss. Also, CALFA enables training on more devices by reducing the model size.\",\"PeriodicalId\":50910,\"journal\":{\"name\":\"ACM Transactions on Sensor Networks\",\"volume\":\"14 6\",\"pages\":\"0\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3628431\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3628431","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Cloud-based Collaborative Agricultural Learning with Flexible Model Size and Adaptive Batch Number
With the rapid growth in the world population, developing agricultural technologies has been an urgent need. Sensor networks have been widely used to monitor and manage agricultural status. Moreover, Artificial Intelligence (AI) techniques are adopted for their high accuracy to enable the analysis of massive data collected through the sensor network. The datasets on the devices of agricultural applications usually need to be completed and bigger, which limits the performance of AI algorithms. Thus, researchers turn to Collaborative Learning (CL) to utilize the data on multiple devices to train a global model privately. However, current CL frameworks for agricultural applications suffer from three problems: data heterogeneity, system heterogeneity, and communication overhead. In this paper, we propose cloud-based Collaborative Agricultural Learning with Flexible model size and Adaptive batch number (CALFA) to improve the efficiency and applicability of the training process while maintaining its effectiveness. CALFA contains three modules. The Classification Pyramid allows the devices to use different sizes of models during training and enables the classification of different object sizes. Adaptive Aggregation modifies the aggregation weights to maintain the convergence speed and accuracy. Adaptive Adjustment modifies the training batch numbers to mitigate the communication overhead. The experimental results illustrate that CALFA outperforms other SOTA CL frameworks by reducing up to 75% communication overhead with nearly no accuracy loss. Also, CALFA enables training on more devices by reducing the model size.
期刊介绍:
ACM Transactions on Sensor Networks (TOSN) is a central publication by the ACM in the interdisciplinary area of sensor networks spanning a broad discipline from signal processing, networking and protocols, embedded systems, information management, to distributed algorithms. It covers research contributions that introduce new concepts, techniques, analyses, or architectures, as well as applied contributions that report on development of new tools and systems or experiences and experiments with high-impact, innovative applications. The Transactions places special attention on contributions to systemic approaches to sensor networks as well as fundamental contributions.